/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mech_api.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__naps
#define _nrn_initial _nrn_initial__naps
#define nrn_cur _nrn_cur__naps
#define _nrn_current _nrn_current__naps
#define nrn_jacob _nrn_jacob__naps
#define nrn_state _nrn_state__naps
#define _net_receive _net_receive__naps
#define states states__naps
#define trates trates__naps
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define gbar_columnindex 0
#define sh _p[1]
#define sh_columnindex 1
#define ar _p[2]
#define ar_columnindex 2
#define thegna _p[3]
#define thegna_columnindex 3
#define minf _p[4]
#define minf_columnindex 4
#define sinf _p[5]
#define sinf_columnindex 5
#define taus _p[6]
#define taus_columnindex 6
#define m _p[7]
#define m_columnindex 7
#define s _p[8]
#define s_columnindex 8
#define ena _p[9]
#define ena_columnindex 9
#define ina _p[10]
#define ina_columnindex 10
#define Dm _p[11]
#define Dm_columnindex 11
#define Ds _p[12]
#define Ds_columnindex 12
#define v _p[13]
#define v_columnindex 13
#define _g _p[14]
#define _g_columnindex 14
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alps(void);
static void _hoc_bets(void);
static void _hoc_trates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_naps", _hoc_setdata,
"alps_naps", _hoc_alps,
"bets_naps", _hoc_bets,
"trates_naps", _hoc_trates,
0, 0
};
#define alps alps_naps
#define bets bets_naps
extern double alps( _threadargsprotocomma_ double );
extern double bets( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define avs avs_naps
double avs = 30;
#define asvh asvh_naps
double asvh = -85;
#define a0s a0s_naps
double a0s = 0.001;
#define bvs bvs_naps
double bvs = 10;
#define bsvh bsvh_naps
double bsvh = -17;
#define b0s b0s_naps
double b0s = 0.0034;
#define mtau mtau_naps
double mtau = 1;
#define vslope vslope_naps
double vslope = 6.8;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vslope_naps", "mV",
"mtau_naps", "ms",
"a0s_naps", "/ms",
"b0s_naps", "/ms",
"asvh_naps", "mV",
"bsvh_naps", "mV",
"avs_naps", "mV",
"bvs_naps", "mV",
"gbar_naps", "mho/cm2",
"sh_naps", "mV",
"ar_naps", "1",
"thegna_naps", "mho/cm2",
"taus_naps", "ms",
0,0
};
static double delta_t = 0.01;
static double m0 = 0;
static double s0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vslope_naps", &vslope_naps,
"mtau_naps", &mtau_naps,
"a0s_naps", &a0s_naps,
"b0s_naps", &b0s_naps,
"asvh_naps", &asvh_naps,
"bsvh_naps", &bsvh_naps,
"avs_naps", &avs_naps,
"bvs_naps", &bvs_naps,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(NrnThread*, _Memb_list*, int);
static void nrn_state(NrnThread*, _Memb_list*, int);
static void nrn_cur(NrnThread*, _Memb_list*, int);
static void nrn_jacob(NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(NrnThread*, _Memb_list*, int);
static void _ode_matsol(NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"naps",
"gbar_naps",
"sh_naps",
"ar_naps",
0,
"thegna_naps",
"minf_naps",
"sinf_naps",
"taus_naps",
0,
"m_naps",
"s_naps",
0,
0};
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 15, _prop);
/*initialize range parameters*/
gbar = 0.0052085;
sh = 0;
ar = 1;
_prop->param = _p;
_prop->param_size = 15;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _naps_reg() {
int _vectorized = 1;
_initlists();
ion_reg("na", -10000.);
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 15, 4);
hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 naps naps.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "naps :modified to have slow inactivation described in Fleidervish and to make slope a global parameter";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int trates(_threadargsprotocomma_ double, double, double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {int _reset = 0; {
trates ( _threadargscomma_ v , ar , sh ) ;
Ds = ( sinf - s ) / taus ;
Dm = ( minf - m ) / mtau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
trates ( _threadargscomma_ v , ar , sh ) ;
Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / taus )) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) { {
trates ( _threadargscomma_ v , ar , sh ) ;
s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taus)))*(- ( ( ( sinf ) ) / taus ) / ( ( ( ( - 1.0 ) ) ) / taus ) - s) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
}
return 0;
}
static int trates ( _threadargsprotocomma_ double _lvm , double _la2 , double _lsh2 ) {
double _lc ;
minf = ( 1.0 / ( 1.0 + exp ( - ( _lvm + 52.3 - _lsh2 ) / vslope ) ) ) ;
taus = 1.0 / ( alps ( _threadargscomma_ _lvm ) + bets ( _threadargscomma_ _lvm ) ) ;
_lc = alps ( _threadargscomma_ _lvm ) * taus ;
sinf = _lc + _la2 * ( 1.0 - _lc ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
trates ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) );
hoc_retpushx(_r);
}
double alps ( _threadargsprotocomma_ double _lv ) {
double _lalps;
_lalps = a0s * exp ( ( asvh - _lv ) / avs ) ;
return _lalps;
}
static void _hoc_alps(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alps ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double bets ( _threadargsprotocomma_ double _lv ) {
double _lbets;
_lbets = b0s / ( exp ( ( bsvh - _lv ) / bvs ) + 1.0 ) ;
return _lbets;
}
static void _hoc_bets(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = bets ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
int _i; double _save;{
m = m0;
s = s0;
{
trates ( _threadargscomma_ v , ar , sh ) ;
m = minf ;
s = sinf ;
}
}
}
static void nrn_init(NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
thegna = gbar * m * s ;
ina = thegna * ( v - ena ) ;
}
_current += ina;
} return _current;
}
static void nrn_cur(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ena = _ion_ena;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = s_columnindex; _dlist1[0] = Ds_columnindex;
_slist1[1] = m_columnindex; _dlist1[1] = Dm_columnindex;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "naps.mod";
static const char* nmodl_file_text =
"TITLE naps :modified to have slow inactivation described in Fleidervish and to make slope a global parameter\n"
"\n"
"NEURON {\n"
" SUFFIX naps\n"
" USEION na READ ena WRITE ina\n"
" RANGE gbar, thegna, sh, ar,minf,sinf,taus\n"
" GLOBAL mtau,vslope\n"
"}\n"
"\n"
"PARAMETER {\n"
" gbar = .0052085 (mho/cm2)\n"
" sh = 0 (mV)\n"
" vslope=6.8 (mV) :activation slope\n"
" mtau = 1 (ms)\n"
" ena (mV) :must be explicitly defined in hoc \n"
" a0s=0.001 (/ms) \n"
" b0s=0.0034 (/ms)\n"
" asvh=-85 (mV) \n"
" bsvh=-17 (mV) \n"
" avs=30 (mV)\n"
" bvs=10 (mV)\n"
" ar=1 (1) : 1=no inact., 0=max inact.\n"
" celsius (degC)\n"
" v (mV)\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
"} \n"
"\n"
"ASSIGNED {\n"
" ina (mA/cm2)\n"
" thegna (mho/cm2)\n"
" minf \n"
" sinf\n"
" taus (ms)\n"
"}\n"
" \n"
"\n"
"STATE { m s }\n"
"\n"
"UNITSOFF\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" \n"
" thegna =gbar*m*s \n"
" ina = thegna * (v - ena)\n"
" } \n"
"\n"
"INITIAL {\n"
" trates(v,ar,sh)\n"
" m=minf \n"
" s=sinf\n"
"}\n"
"\n"
"DERIVATIVE states { \n"
" trates(v,ar,sh)\n"
" s' = (sinf - s)/taus\n"
" m' = (minf-m)/mtau\n"
"}\n"
"\n"
"PROCEDURE trates(vm,a2,sh2) { \n"
" LOCAL c \n"
"\n"
" minf = (1/(1+exp(-(vm+52.3-sh2)/vslope))) \n"
" taus = 1/(alps(vm)+bets(vm))\n"
" c=alps(vm)*taus\n"
" sinf = c+a2*(1-c)\n"
" }\n"
"\n"
"\n"
"\n"
"\n"
"FUNCTION alps(v(mV)) { \n"
" alps = a0s*exp((asvh-v)/avs)\n"
"}\n"
"\n"
"FUNCTION bets(v(mV)) {\n"
" bets = b0s/(exp((bsvh-v)/bvs)+1)\n"
"}\n"
"\n"
"UNITSON\n"
;
#endif