: $Id: intf6.mod,v 1.58 2011/02/04 05:39:43 samn Exp $
:* main COMMENT
COMMENT
intf6.mod was branched from intf.mod version 847 on 10jul13 -- look at intf.mod RCS
log/diffs to see anything prior. note that AM2,NM2,GA2 code was mostly taken from
intf.mod version 815.
artificial cell incorporating 4 input weights with different time constants and signs
typically a fast AMPA, slow NMDA, and fast GABAA
features:
1. Mg dependence for NMDA activation
2. depolarization blockade
3. AHP affects both Vm and refractory period (adaptation)
4. decrementing excitatory and/or inhibitory activity post spk (another adaptation)
since artificial cells only do calculations when they receive events, a set of vec
pointers are maintained to allow state var information storage when event arrives
(see initrec() and record())
ENDCOMMENT
:* main VERBATIM block
VERBATIM
#include "misc.h"
#include <unistd.h>
#ifdef NRN_MECHANISM_DATA_IS_SOA
#define get_dparam(prop) _nrn_mechanism_access_dparam(prop)
#define get_type(prop) _nrn_mechanism_get_type(prop)
#define id0ptr(prop) static_cast<id0*>(_nrn_mechanism_access_dparam(prop)[2].get<void*>())
#else
#define get_dparam(prop) prop->dparam
#define get_type(prop) prop->_type
#define id0ptr(prop) (*((id0**)&(prop->dparam[2])))
#endif
static int ctt(unsigned int, char**);
static void setdvi2(double*,double*,char*,int,int);
void gsort3 (double *, Point_process **, char*, int, double *, Point_process **,char*);
void gsort2 (double *, Point_process **, int, double *, Point_process **);
#define PI 3.14159265358979323846264338327950288419716939937510
#define nil 0
#define CTYPp 41 // CTYPp>CTYPi from labels.hoc
#define SOP (((id0*) _p_sop)->vp)
#define IDP (*((id0**) &(_p_sop)))
#define NSW 100 // just store voltages
#define NSV 11 // 10 state variables (+ 1 for time)
#define FOFFSET 100 // flag offset for net_receive()
#define WRNUM 5 // a single INTF6 can store into this many ww field vecs
#define DELM(X,Y) (*(pg->delm+(X)*CTYPi+(Y)))
#define DELD(X,Y) (*(pg->deld+(X)*CTYPi+(Y)))
#define DVG(X,Y) ((int)*(pg->dvg+(X)*CTYPi+(Y)))
// #define DVG(X,Y,Z) ((int)*(pg->dvg+(X)*CTYPi+(Y)))
#define WMAT(X,Y,Z) (*(pg->wmat+(X)*CTYPi*STYPi+(Y)*STYPi+(Z)))
#define WD0(X,Y,Z) (*(pg->wd0 +(X)*CTYPi*STYPi+(Y)*STYPi+(Z)))
#define NUMC(X) (*(pg->numc+(X)))
#define HVAL(X) (*(hoc_objectdata[(hoc_get_symbol((X)))->u.oboff]._pval))
#define HPTR(X) (hoc_objectdata[(hoc_get_symbol((X)))->u.oboff]._pval)
// for recording (?)
typedef struct VPT {
unsigned int id;
unsigned int size;
unsigned int p;
IvocVect* vv[NSV];
double* vvo[NSV];
} vpt;
// each column can have one of these
typedef struct POSTGRP { // postsynaptic group
double *dvg; double *delm; double *deld; double *ix; double *ixe; double *wmat; double *wd0;
double *numc; // num cells by type
unsigned int col; // COLUMN ID
double* jrid; // for recording SPIKES
double* jrtv;
IvocVect* jridv;
IvocVect* jrtvv;
unsigned int jtpt,jtmax,jrmax;
unsigned long jri,jrj;
unsigned long spktot,eventtot;
double *isp, *vsp, *wsp, *sysp; // arrays for external inputs
int vspn;
double *lastspk; // array with last spike times for all cells
unsigned int cesz; // size of ce
Object *ce; // cell list
struct POSTGRP *next;
} postgrp;
// each cell gets one of these, note that postgrp pointer is an element
typedef struct ID0 {
vpt *vp;
postgrp *pg; // <-- pointer to get to postsynaptic cells, shared by cells in a column
float wscale[WRNUM];
Point_process **dvi; // each cell has a divergence list
Point_process **cvi; // each cell has a convergence list
double *del; // each syn has its own intrinsic delay
char *syns; // each syn has a type
unsigned char *sprob; // each syn has a firing probability 0-255->0-1
double* wgain; // gain for synapses - used for plasticity
int* peconv; // IDs of E cells converging on this cell
int econvsz;
double* syw1; // synaptic weights (parallel to divergence list) -- used for AMPA,GABAA
double* syw2; // synaptic weights -- used for NMDA,GABAB -- these lists only used when wsetting==1
unsigned int dvt;
unsigned int id; // within-COLUMN ID
unsigned int col; // COLUMN
unsigned int rvb;
unsigned int rvi;
unsigned int spkcnt;
unsigned int blkcnt;
unsigned int gid; // global ID
int rve;
char wreci[WRNUM]; // since use -1 as a flag
char errflag;
// type -> vbr MUST REMAIN unbroked BLOCK -- see flag()
// when adding flags also augment iflags, iflnum
// only use first 3 letters with flag() -- see iflags
unsigned char type; // |
unsigned char inhib; // |
unsigned char record;// |
unsigned char wrec; // |
unsigned char jttr; // |
unsigned char input; // |
unsigned char vinflg;// |
unsigned char invl0; // |
unsigned char jcn; // |
unsigned char dead; // |
unsigned char vbr; // |
char dbx; // |
char flag; // |
char out; // |
// end BLOCK
} id0;
// globals -- range vars must be malloc'ed in the CONSTRUCTOR
static vpt *vp; // vp, pg, ip are used as temporary pointers
static id0 *ip, *qp, *rp;
static int inumcols=0;
static int ippgbufsz=0;
static postgrp **ppg=0x0;
static postgrp *pg;
static unsigned int nextGID = 0;
static Object *CTYP;
static Point_process *pmt, *tpnt;
static char *name;
static Symbol* cbsv;
// iflags string use to find flags -- note that only 1st 3 chars are used to identify
static char iflags[100]="typ inh rec wre jtt inp vin inv jcn dea vbr dbx fla out";
static char iflnum=14, iflneg=11, errflag; // turn on after generating an error message
static double *jsp, *invlp;
static void lop (Object *ob, unsigned int i); // accessed by all INTF6
id0* getlp (Object *ob, unsigned int i); // get pointer from list
static void applyplast (id0* ppo,double pospkt, double phase, double pinc);
static double vii[NSV]; // temp storage
static unsigned int wwpt,wwsz,wwaz; // pointer, size for shared ww vectors
static unsigned int sead, spikes[CTYPp], blockcnt[CTYPp]; // 'sead' vs global 'seed'/ used elsewhere
static unsigned int AMo[CTYPp],NMo[CTYPp],GAo[CTYPp]; // count overages for types
static unsigned int AMo2[CTYPp],NMo2[CTYPp],GAo2[CTYPp]; // count overages for types (farther from soma)
static char* CNAME[CTYPp]; // 20 should be > CTYPi
static int cty[CTYPp], process, ctymap[CTYPp];
static int CTYN, CTYPi, STYPi, dscrsz; // from labels.hoc
static double qlimit, *dscr;
FILE *wf1, *wf2, *tf;
IvocVect* ww[NSW];
double* wwo[NSW];
static int AM=0, NM=1, GA=2, GB=3, AM2=4, NM2=5, GA2=6, SU=3, IN=4, DP=2; // from labels.hoc
static double wts[13],hsh[13]; // for jitcons to use as a junk pointer
static void spkoutf2();
ENDVERBATIM
:* NEURON, PARAMETER, ASSIGNED blocks
NEURON {
ARTIFICIAL_CELL INTF6
RANGE VAM, VNM, VGA, AHP :::: cell state variables
RANGE VAM2, VNM2, VGA2 :::: state vars for distal dend inputs
RANGE Vm :::: derived var
: parameters
RANGE tauAM, tauNM, tauGA :::: synaptic params
RANGE tauAM2, tauNM2, tauGA2 :::: synaptic params meant for distal dends
RANGE tauahp, ahpwt :::: intrinsic params
RANGE tauRR , RRWght :::: relative refrac. period tau, wght of Vblock-VTH for refrac
RANGE RMP,VTH,Vblock,VTHC,VTHR :::: Vblock for depol blockade
RANGE nbur,tbur,refrac :::: burst size, interval; refrac period and extender
RANGE invl,oinvl,WINV,invlt :::: interval bursting params
RANGE Vbrefrac
RANGE STDAM, STDNM, STDGA :::: specific amounts of STD for each type of synapse
RANGE mg0 :::: sensitivity to Mg2+, used in rates
RANGE maxnmc :::: maximum NMDA 'conductance', used in rates
RANGE plastinc : increment for plasticity - parameter at postsynaptic side
GLOBAL EAM, ENM, EGA,mg :::: "reverse potential" distance from rest
GLOBAL spkht, wwwid,wwht :::: display: spike height, width/ht for pop spikes
GLOBAL stopoq :::: flags: stop if q is empty, use STD
: other stuff
POINTER sop :::: Structure pointer for other range vars
RANGE spck,xloc,yloc,zloc
RANGE t0,tg,twg,refractory,trrs :::: t0,tg save times for analytic calc
RANGE cbur :::: burst statevar
RANGE WEX :::: weight of external input < 0 == inhib, > 0 ==excit
RANGE EXSY :::: synapse target of external input
RANGE lfpscale :::: scales contribution to lfp, only if cell is being recorded in wrecord
RANGE tauplast :::: plasticity time-constant - not used right now
GLOBAL vdt,nxt,RES,ESIN,Psk :::: table look up values for exp,sin
GLOBAL prnum, nsw, rebeg :::: for debugging moves
GLOBAL subsvint, jrsvn, jrsvd, jrtime, jrtm :::: output params
GLOBAL DEAD_DIV, seedstep :::: dead cells on div list?
GLOBAL seaddvioff :::: seed offset for dvi/del
GLOBAL WVAR,DELMIN
GLOBAL savclock,slowset,FLAG
GLOBAL tmax,installed,verbose :::: simplest output
GLOBAL pathbeg,pathend,PATHMEASURE,pathidtarg,pathtytarg,seadsetting,pathlen
GLOBAL maxplastw : maximum plasticity gain factor
GLOBAL maxplastt : maximum difference in time between spikes to apply plasticity over
GLOBAL plaststartT : when plasticity is turned on
GLOBAL plastendT : when plasticity is turned off
GLOBAL resetplast : whether to reset all wgain entries to 1 at start of run
GLOBAL wsetting : setting for weights. 0=use WMAT,WD0. 1=use syw1,syw2.
}
PARAMETER {
tauAM = 10 (ms)
tauNM = 300 (ms)
tauGA = 10 (ms)
tauAM2 = 20 (ms)
tauNM2 = 300 (ms)
tauGA2 = 20 (ms)
invl = 100 (ms)
WINV = 0
ahpwt = 0
tauahp= 10 (ms)
tauRR = 6 (ms)
refrac = 5 (ms)
Vbrefrac = 20 (ms)
RRWght = 0.75
wwwid = 10
wwht = 10
VTH = -45 : fixed spike threshold
VTHC = -45
VTHR = -45
Vblock = -20 : level of depolarization blockade
vdt = 0.1 : time step for saving state var
mg = 1 : for NMDA Mg dep.
sop=0
nbur=1
tbur=2
RMP=-65
EAM = 65
ENM = 90
EGA = -15
spkht = 50
prnum = -1
nsw=0
rebeg=0
subsvint=0
jrsvn=1e4 jrsvd=1e4 jrtime=-1 jrtm=-1
seedstep=44340
seaddvioff=9102098713763e-134
DEAD_DIV=1
WVAR=0.2
stopoq=0
PATHMEASURE=0
verbose=1
seadsetting=0
pathidtarg=-1
DELMIN=1e-5 : min delay to bother using queue -- otherwise considered simultaneous
STDAM=0
STDNM=0
STDGA=0
mg0 = 3.57
maxnmc = 1.0
lfpscale = 1.0
maxplastw = 10.0
maxplastt = 10.0
plastinc = 0.01
tauplast = 1
plaststartT = -1 : default of -1 means always on (when seadsetting==3)
plastendT = -1 : default of -1 means always on (when seadsetting==3)
resetplast = 1 : default to reset wgain entries to 1 at start of run
wsetting = 0 : default -- use WMAT,WD0
}
ASSIGNED {
Vm VAM VNM VGA AHP VAM2 VNM2 VGA2
t0 tg twg refractory nxt xloc yloc zloc trrs
WEX EXSY RES ESIN Psk cbur invlt oinvl tmax spck savclock slowset FLAG
installed
pathbeg pathend pathtytarg pathlen
}
:* CONSTRUCTOR, DESTRUCTOR, INITIAL
:** CONSTRUCT: create a structure to save the identity of this unit and char integer flags
CONSTRUCTOR {
VERBATIM
{ int lid,lty,lin,lco,lgid,i; unsigned int sz;
if (ifarg(1)) { lid=(int) *getarg(1); } else { lid= UINT_MAX; } // ID
if (ifarg(2)) { lty=(int) *getarg(2); } else { lty= -1; } // type
if (ifarg(3)) { lin=(int) *getarg(3); } else { lin= -1; } // inhib
if (ifarg(4)) { lco=(int) *getarg(4); } else { lco= -1; } // column
_p_sop = (double*)ecalloc(1, sizeof(id0)); // important that calloc sets all flags etc to 0
ip = IDP;
ip->id=lid; ip->type=lty; ip->inhib=lin; ip->col=lco;
ip->pg=0x0; ip->dvi=0x0; ip->sprob=0x0; ip->syns=0x0; ip->wgain=0x0; ip->peconv=0x0; ip->syw1 = ip->syw2 = 0x0;
ip->dead = ip->invl0 = ip->record = ip->jttr = ip->input = 0; // all flags off
ip->dvt = ip->vbr = ip->wrec = ip->jcn = ip->out = 0;
for (i=0;i<WRNUM;i++) {ip->wreci[i]=-1; ip->wscale[i]=-1.0;}
ip->rve=-1;
pathbeg=-1;
slowset=0;
ip->gid = nextGID++; // global identifier
process=(int)getpid();
CNAME[SU]="SU"; CNAME[DP]="DP"; CNAME[IN]="IN";
if (installed==2.0 && ip->pg) { // jitcondiv was previously run
sz=ivoc_list_count(ip->pg->ce);
if(verbose) printf("\t**** WARNING new INTF6 created: may want to rerun jitcondiv ****\n");
} else installed=1.0; // set or reset it
cbsv=0x0;
}
ENDVERBATIM
}
DESTRUCTOR {
VERBATIM {
free(IDP);
}
ENDVERBATIM
}
:** INITIAL
INITIAL { LOCAL id
reset()
t0 = 0
tg = 0
twg = 0
trrs = 0
tmax=0
pathend=-1
pathlen=0
VERBATIM
{ int i,ix;
ip=IDP;
_lid=(double)ip->id;
ip->spkcnt=0;
ip->blkcnt=0;
ip->errflag=0;
ip->pg->lastspk[ip->id]=-1;
for (i=0;i<CTYN;i++){ix=cty[i]; blockcnt[ix]=spikes[ix]=AMo[ix]=NMo[ix]=GAo[ix]=AMo2[ix]=NMo2[ix]=GAo2[ix]=0;}
if(seadsetting==3 && resetplast && ip->wgain) for(i=0;i<ip->dvt;i++) ip->wgain[i]=1.0; // reset learning
}
ENDVERBATIM
jrsvn=jrsvd jrtime=jrtm
: init with vinset(0) if will turn on via a NetCon with w5=1
if (vinflag()) { randspk() net_send(nxt,2)}
if (recflag()) { recini() } : recini() resets for recording, cf recinit()
if (pathbeg==id) {
stoprun=0
net_send(0,2)
} : send at time 0
rebeg=0 : will reset this to restart storage for rec,wrec
}
PROCEDURE reset () {
Vm = RMP
VAM = 0
VNM = 0
VGA = 0
AHP=0
VAM2 = 0
VNM2 = 0
VGA2 = 0
invlt = -1
t0 = t
tg = t
twg = t
trrs = t
cbur = 0 : # bursts left to 0, just in case
spck = 0 : spike count to 0
refractory = 0 : 1 means cell is absolute refractory
VTHC=VTH :set current threshold to absolute threshold value
VTHR=VTH :set this one too to make sure it's initialized
}
VERBATIM
unsigned int GetDVIDSeedVal(unsigned int id) {
double x[2];
if (seadsetting==1) {
sead=((unsigned int)ip->id+seaddvioff)*1e6;
} else {
if (seadsetting==2) printf("Warning: GetDVIDSeedVal called with wt rand turned off\n");
x[0]=(double)id; x[1]=seaddvioff;
sead=hashseed2(2, x);
}
return sead;
}
ENDVERBATIM
: seed for divergence and delays -- not yet used
FUNCTION DVIDSeed(){
VERBATIM
return (double)GetDVIDSeedVal(IDP->id);
ENDVERBATIM
}
:* NET_RECEIVE
NET_RECEIVE (wAM,wNM,wGA,wGB,wAM2,wNM2,wGA2,wflg) { LOCAL tmp,jcn,id
INITIAL { wAM=wAM wNM=wNM wGA=wGA wGB=wGB wAM2=wAM2 wNM2=wNM2 wGA2=wGA2 wflg=0}
: intra-burst, generate next spike as needed
VERBATIM
id0 *ppre; int prty,poty,prin,prid,poid,ii,sy,nsyn,distal; double STDf,wgain,syw1,syw2; //@
ENDVERBATIM
tmax=t
VERBATIM
if (stopoq && !qsz()) stoprun=1;
ip=IDP; pg=ip->pg; ppre = 0x0; poid=ip->id;
if (ip->dead) return; // this cell has died
_ljcn=ip->jcn; _lid=ip->id;
tpnt = _pnt; // this pnt
if (PATHMEASURE) { // do all code for this
if (_lflag==2 || _lflag<0) { // on the callback -- distribute to divergence list
double idty; int i;
if (_lflag==2) ip->flag=-1;
idty=(double)(FOFFSET+ip->id)+1e-2*(double)ip->type+1e-3*(double)ip->inhib+1e-4;
for (i=0;i<ip->dvt && !stoprun;i++) if (ip->sprob[i]) {
(*pnt_receive[get_type(ip->dvi[i]->_prop)])(ip->dvi[i], wts, idty);
// restore pointers each time
#ifdef NRN_MECHANISM_DATA_IS_SOA
neuron::legacy::set_globals_from_prop(_pnt->_prop, _ml_real, _ml, _iml);
#else
_p = _pnt->_prop->param;
#endif
_ppvar = get_dparam(_pnt->_prop);
ip = IDP;
}
return; // else see if destination has been reached
} else if (_lflag!=2 && (pathtytarg==(double)ip->type || pathidtarg==(double)ip->id)) {
if (pathend==(double)ip->id) return; // means that coming back here again
ip->flag=(unsigned char)floor(t)+1; // type-target or id-target
pathend=(double)ip->id;
pathlen=tmax+1; // tmax gives pathlength
stoprun=1.;
return;
// deadends:visited || no output ||stopped
} else if (ip->flag || ip->dvt==0 || stoprun) {
return; // inhib cell is a deadend; don't revisit anyone
} else if (ip->inhib) {
if (!ip->flag) ip->flag=(unsigned char)floor(t)+1;
} else { // first callback will be from the stim
ip->flag=(unsigned char)floor(t)+1;
#if defined(t)
net_send((void**)0x0, wts,tpnt,t+1.,-1.); // the callback call
#else
net_send((void**)0x0, wts,tpnt,1.,-1.); // the callback call
#endif
return;
}
}
if (_lflag==OK) { FLAG=OK; flag(); return; } // identify internal call with errflag
if (_lflag<0) { callback(_lflag); return; }
pg->eventtot+=1;
// if(flag==0) { printf("flag==0!\n"); }
ENDVERBATIM
VERBATIM
if (ip->dbx>2)
ENDVERBATIM
{
pid()
printf("DB0: flag=%g Vm=%g",flag,VAM+VNM+VGA+RMP+AHP+VAM2+VNM2+VGA2)
if (flag==0) { printf(" (%g %g %g %g %g %g %g)",wAM,wNM,wGA,wAM2,wNM2,wGA2,wflg) }
printf("\n")
}
: causes of spiking: between VTH and Vblock, random from vsp (flag 2), within burst
:** JITcon code - only meant for intra-COLUMN events
if (flag>=FOFFSET) { : jitcon -- set up weights on the fly
VERBATIM {
// find type of presyn
prid = (int)(_lflag-FOFFSET); // that correct? - if not, put prid in wts[2]
poty=(int)ip->type;
prty=(int)(1e2*(_lflag-floor(_lflag)));
prin=(int)(1e3*(_lflag-floor(_lflag)-prty*1e-2)); // stuffed into this flag
distal = ((int) (_lflag * 1e5 + 0.5)) % 2;
if(distal){ sy=prin?GA2:AM2; } else { sy=prin?GA:AM; }
// if(verbose>4) printf("receive: %s->%s, prin=%d, distal=%d, sy=%d, _lflag=%.10f\n",\
// CNAME[ctymap[prty]],CNAME[ctymap[poty]],prin,distal,sy,_lflag);
STDf=_args[0]; // save value -- for short-term changes
wgain=_args[1]; // save value -- for plasticity
syw1=_args[2]; // save value -- for non-MATRIX weight 1 -- only used when wsetting==1
syw2=_args[3]; // save value -- for non-MATRIX weight 2 -- only used when wsetting==1
if(ip->dbx<-1) printf("prid%d,poid%d,wgain=%g\n",prid,poid,wgain);
for (ii=0;ii<=6;ii++) _args[ii]=0.; // clear _args (stores weights for later) to be safe
if (seadsetting==3) { // plasticity mode is on
ppre = getlp(pg->ce,prid); // get pointer to presynaptic cell
if(ip->dbx<-1) printf("ppre%p,pre%d->po%d,wg=%g\n",ppre,prid,ip->id,wgain);
if(ppre->inhib) ppre = 0x0; // only care about presynaptic E cells for plasticity
}
if(ppre) { // presynaptic E cell AND plasticity mode is on
for (ii=sy,nsyn=0;ii<sy+2;ii++) {
if(ii==AM2 || ii==AM) { // AMPA plasticity factor
if(wsetting==1.0) { // non-MATRIX weights and AMPA plasticity if(ip->dbx<-1) printf("pre%d->po%d,sy=%d,wg=%g,w=%g\n",prid,ip->id,ii,wgain,_args[ii]);
_args[ii] = ii == sy ? syw1 * wgain : syw2 * wgain;
} else { // MATRIX weights and AMPA plasticity
_args[ii]=wgain*WMAT(prty,poty,ii)*WD0(prty,poty,ii);
}
if(ip->dbx<-1) printf("pre%d->po%d,sy=%d,wg=%g,w=%g\n",prid,ip->id,ii,wgain,_args[ii]);
} else { // non-AMPA -->> no plasticity applied
if(wsetting==1.0) { // non-MATRIX weights and non AMPA
_args[ii] = ii == sy ? syw1 : syw2;
} else { // MATRIX weights and non AMPA
_args[ii]=WMAT(prty,poty,ii)*WD0(prty,poty,ii);
}
}
nsyn+=(_args[ii]>0.);
}
} else { // no plasticity applied
if(wsetting==1.0) { // non-MATRIX weights
_args[sy+0] = syw1;
_args[sy+1] = syw2;
nsyn = (_args[sy+0]>0.) + (_args[sy+1]>0.);
} else { // MATRIX weights
for (ii=sy,nsyn=0;ii<sy+2;ii++) nsyn+=((_args[ii]=WMAT(prty,poty,ii)*WD0(prty,poty,ii))>0.);
}
}
if (nsyn==0) return; //return for 0-weight events, before changing state vars or Vm
if (seadsetting==3) { // empty 'if' to skip next clause
} else if (seadsetting!=2) { // not fixed weights
if (seadsetting==1) {
sead=(unsigned int)(floor(_lflag)*ip->id*seedstep); // all integers
} else { // hash on presynaptic id+FOFFSET,poid,seedstep
hsh[0]=floor(_lflag); hsh[1]=(double)ip->id; hsh[2]=seedstep;
sead=hashseed2(3, hsh); // hsh[] is just scratch pad
}
mcell_ran4(&sead, &_args[sy], 2, 1.);
for (ii=sy;ii<sy+2;ii++) { // scale appropriately;
_args[ii]=2*WVAR*(_args[ii]+0.5/WVAR-0.5)*WMAT(prty,poty,ii)*WD0(prty,poty,ii);
}
}
}
ENDVERBATIM
VERBATIM
if (ip->dbx>2)
ENDVERBATIM
{
pid()
printf("DF: flag=%g Vm=%g",flag,VAM+VNM+VGA+RMP+AHP+VAM2+VNM2+VGA2)
printf(" (%g %g %g %g %g %g %g)",wAM,wNM,wGA,wAM2,wNM2,wGA2,wflg)
printf("\n")
}
:** mid-burst
} else if (flag==4) {
cbur=cbur-1 : count down the spikes
if (cbur>0) {
net_send(tbur,4)
} else { : end of burst
refractory = 1 : signal that this cell is in refractory period
net_send(refrac, 3) : send event for end of refractory
}
tmp=t
VERBATIM
if (ip->jttr)
ENDVERBATIM
{ tmp= t+jttr()/10 }
if (jcn) {
jitcon(tmp)
VERBATIM
if(ip->out)
ENDVERBATIM
{ net_event(tmp) }
} else { net_event(tmp) }
VERBATIM
spikes[ip->type]++; //@
ENDVERBATIM
spck=spck+1
VERBATIM
if (ip->dbx>0)
ENDVERBATIM
{ pid() printf("DBA: mid-burst event at %g, %g\n",tmp,cbur) }
VERBATIM
if (ip->record)
ENDVERBATIM
{ recspk(tmp) }
VERBATIM
if (ip->wrec)
ENDVERBATIM
{ wrecord(t) }
VERBATIM
return; //@ done
ENDVERBATIM
: start reading random spike times (or burst times) from vsp vector pointer
: this is signaled externally from a netstim with wflg=1, will turn off on next stim
: (NB wflg used in completely different context for GABAB) ?? is this still true ??
: this is bad -- should use a special netcon that just handles signals
} else if (flag==0 && wflg==1) {
VERBATIM
ip->input=1; //@
ENDVERBATIM
wflg=2 : set flag to turn off next time an external event comes from here
randspk()
net_send(nxt,2)
VERBATIM
return; //@ done
ENDVERBATIM
} else if (flag==0 && wflg==2) { : flag to stop random spikes
VERBATIM
ip->input=0; //@ inputs that are read from a vector of times -- see randspk()
ENDVERBATIM
wflg=1 : flag to turn on next time
VERBATIM
return; //@ done
ENDVERBATIM
} else if (flag==6) {
VERBATIM
if(ip->dbx<-1) printf("%d@%g applyplast\n",ip->id,ip->pg->lastspk[ip->id]); //@
ENDVERBATIM
tmp=t-maxplastt
VERBATIM
applyplast(ip,_ltmp,-1.0,plastinc); //@
ENDVERBATIM
VERBATIM
return; //@ done
ENDVERBATIM
}
: update state variables
VERBATIM
if (ip->record)
ENDVERBATIM
{ record() }
VERBATIM
if (ip->wrec)
ENDVERBATIM
{ wrecord(1e9) }
:** update state variables: VAM, VNM, VGA
if (VAM>hoc_epsilon) { VAM = VAM*EXP(-(t - t0)/tauAM) } else { VAM=0 } :AMPA
if (VNM>hoc_epsilon) { VNM = VNM*EXP(-(t - t0)/tauNM) } else { VNM=0 } :NMDA
if (VGA< -hoc_epsilon){ VGA = VGA*EXP(-(t - t0)/tauGA) } else { VGA=0 } :GABAA
if (VAM2>hoc_epsilon) {VAM2 = VAM2*EXP(-(t - t0)/tauAM2) } else { VAM2=0 } :AMPA from distal dends
if (VNM2>hoc_epsilon) {VNM2 = VNM2*EXP(-(t - t0)/tauNM2) } else { VNM2=0 } :NMDA from distal dends
if (VGA2< -hoc_epsilon){VGA2 = VGA2*EXP(-(t - t0)/tauGA2) } else { VGA2=0 } :GABAA more distal from soma
if(refractory==0){:once refractory period over, VTHC falls back towards VTH
if(VTHC>VTH) { VTHC = VTH + (VTHR-VTH)*EXP(-(t-trrs)/tauRR) }
}
if (AHP< -hoc_epsilon){ AHP = AHP*EXP(-(t-t0)/tauahp) } else { AHP=0 } : adaptation
t0 = t : finished using t0
Vm = VAM+VNM+VGA+AHP+VAM2+VNM2+VGA2 : membrane deviation from rest
if (Vm> -RMP) {Vm= -RMP}: 65 mV above rest
if (Vm< RMP) {Vm= RMP} : 65 mV below rest
:*** only add weights if an external excitation
if (flag==0 || flag>=FOFFSET) {
: AMPA Erev=0 (0-RMP==65 mV above rest)
if (wAM>0) {
if (STDAM==0) { VAM = VAM + wAM*(1-Vm/EAM)
} else { VAM = VAM + (1-STDAM*STDf)*wAM*(1-Vm/EAM) }
if (VAM>EAM) {
VERBATIM
AMo[ip->type]++; //@
ENDVERBATIM
} else if (VAM<0) { VAM=0 }
}
if (wAM2>0) { : AMPA from distal dends
if (STDAM==0) { VAM2 = VAM2 + wAM2*(1-Vm/EAM)
} else { VAM2 = VAM2 + (1-STDAM*STDf)*wAM2*(1-Vm/EAM) }
if (VAM2>EAM) {
VERBATIM
AMo2[ip->type]++; //@
ENDVERBATIM
} else if (VAM2<0) { VAM2=0 }
}
: NMDA; Mg effect based on total activation in rates()
if (wNM>0 && VNM<ENM) {
if (STDNM==0) { VNM = VNM + wNM*rates(RMP+Vm)*(1-Vm/ENM)
} else { VNM = VNM + (1-STDNM*STDf)*wNM*rates(RMP+Vm)*(1-Vm/ENM) }
if (VNM>ENM) {
VERBATIM
NMo[ip->type]++; //@
ENDVERBATIM
} else if (VNM<0) { VNM=0 }
}
if (wNM2>0 && VNM2<ENM) { : NMDA from distal dends
if (STDNM==0) { VNM2 = VNM2 + wNM2*rates(RMP+Vm)*(1-Vm/ENM)
} else { VNM2 = VNM2 + (1-STDNM*STDf)*wNM2*rates(RMP+Vm)*(1-Vm/ENM) }
if (VNM2>ENM) {
VERBATIM
NMo2[ip->type]++; //@
ENDVERBATIM
} else if (VNM2<0) { VNM2=0 }
}
: GABAA , GABAA2 : note that all wts are positive
if (wGA>0 && VGA>EGA) { : the neg here gives the inhibition
if (STDGA==0) { VGA = VGA - wGA*(1-Vm/EGA)
} else { VGA = VGA - (1-STDGA*STDf)*wGA*(1-Vm/EGA) }
if (VGA<EGA) {
VERBATIM
GAo[ip->type]++; //@
ENDVERBATIM
VERBATIM
if (ip->dbx>2)
ENDVERBATIM
{
pid() printf("DB0A: flag=%g Vm=%g",flag,VAM+VNM+VGA+RMP+AHP+VAM2+VNM2+VGA2)
if (flag==0) { printf(" (%g %g %g %g %g %g)",wGA,EGA,VGA,Vm,AHP,STDf) }
VERBATIM
printf("\nAA:%d:%d\n\n",GAo[ip->type],ip->type); //@
ENDVERBATIM
}
} else if (VGA>0) { VGA=0 } : if want reversal of VGA need to also edit above
}
if (wGA2>0 && VGA2>EGA) { : the neg here gives the inhibition, GABAA2, inputs further from soma
if (STDGA==0) { VGA2 = VGA2 - wGA2*(1-Vm/EGA)
} else { VGA2 = VGA2 - (1-STDGA*STDf)*wGA2*(1-Vm/EGA) }
if (VGA2<EGA) {
VERBATIM
GAo2[ip->type]++; //@
ENDVERBATIM
VERBATIM
if (ip->dbx>2)
ENDVERBATIM
{
pid() printf("DB0A: flag=%g Vm=%g",flag,VAM+VNM+VGA+RMP+AHP+VAM2+VNM2+VGA2)
if (flag==0) { printf(" (%g %g %g %g %g %g)",wGA2,EGA,VGA2,Vm,AHP,STDf) }
VERBATIM
printf("\nAA:%d:%d\n\n",GAo2[ip->type],ip->type); //@
ENDVERBATIM
}
} else if (VGA2>0) { VGA2=0 } : if want reversal of VGA2 need to also edit above
}
:*** modulated interval firing; cf invlfire.mod
VERBATIM
if (ip->invl0)
ENDVERBATIM
{
Vm = RMP+VAM+VNM+VGA+AHP+VAM2+VNM2+VGA2
if (Vm>0) {Vm= 0 }
if (Vm<-90) {Vm=-90}
if (invlt==-1) { : activate for first time
if (Vm>RMP) {
oinvl=invl
invlt=t
net_send(invl,1)
}
} else {
tmp=shift(Vm)
if (tmp!=0) {
net_move(tmp)
if (id()<prnum) {
pid() printf("**** MOVE t=%g to %g Vm=%g %g,%g\n",t,tmp,Vm,invlt,oinvl) }
}
}
}
} else if (flag==1) { : modulated interval firing; cf invlfire.mod
: Vm=RMP+VAM+VNM+VGA+AHP+VAM2+VNM2+VGA2
if (WINV<0) {
if (jcn) {
jitcon(t)
VERBATIM
if(ip->out)
ENDVERBATIM
{ net_event(t) }
} else { net_event(t) } : bypass activation calculation
VERBATIM
spikes[ip->type]++; //@
ENDVERBATIM
spck=spck+1
VERBATIM
if (ip->dbx>0)
ENDVERBATIM
{pid() printf("DBC: interval event\n")}
VERBATIM
if (ip->record)
ENDVERBATIM
{ recspk(t) }
VERBATIM
if (ip->wrec)
ENDVERBATIM
{ wrecord(t) }
} else {
tmp = WINV*(1-Vm/EAM)
VAM = VAM + tmp :: activate interval depolarization
}
oinvl=invl
invlt=t
net_send(invl,1)
} else if (flag==2) { :** flag==2 -- read off external vec (vsp) for next random spike time or single from shock()
VERBATIM
if (ip->dbx>1)
ENDVERBATIM
{pid() printf("DBBa: randspk called: %g,%g\n",WEX,nxt)}
if (WEX>1e8) { : super-threshold event
if (jcn) {
jitcon(t)
VERBATIM
if(ip->out)
ENDVERBATIM
{ net_event(t) }
} else { net_event(t) } : bypass activation calculation
VERBATIM
spikes[ip->type]++; //@
ENDVERBATIM
spck=spck+1
VERBATIM
if (ip->dbx>0)
ENDVERBATIM
{pid() printf("DBB: randspk event @ t=%g\n",t)}
VERBATIM
if (ip->record)
ENDVERBATIM
{ recspk(t) }
VERBATIM
if (ip->wrec)
ENDVERBATIM
{ wrecord(t) }
} else if (WEX>0) { : excitatory input
if(EXSY==AM) {
tmp = WEX*(1-Vm/EAM)
VAM = VAM + tmp
} else if(EXSY==AM2) {
tmp = WEX*(1-Vm/EAM)
VAM2 = VAM2 + tmp
} else if(EXSY==NM) {
tmp = rates(RMP+Vm)*WEX*(1-Vm/ENM)
VNM = VNM + tmp
} else if(EXSY==NM2) {
tmp = rates(RMP+Vm)*WEX*(1-Vm/ENM)
VNM2 = VNM2 + tmp
}
} else if (WEX<0 && WEX!=-1e9) { : inhibitory input
if(EXSY==GA) {
tmp = WEX*(1-Vm/EGA)
VGA = VGA + tmp
} else { :GA2
tmp = WEX*(1-Vm/EGA)
VGA2 = VGA2 + tmp
}
}
if (WEX!=-1e9) { : code for single shock
randspk() : will set WEX for next time
if (nxt>0) { net_send(nxt,2) }
}
} else if (flag==3) {
refractory = 0 :end of absolute refractory period
trrs = t : save time of start of relative refractory period
VERBATIM
return; //@ done
ENDVERBATIM
}
:** check for Vm>VTH -> fire
Vm = VAM+VNM+VGA+RMP+AHP+VAM2+VNM2+VGA2 : WARNING -- Vm defined differently than above
if (Vm>0) {Vm= 0 }
if (Vm<-90) {Vm=-90}
if (refractory==0 && Vm>VTHC) {
VERBATIM
if (!ip->vbr && Vm>Vblock) {//@ do nothing
ENDVERBATIM
VERBATIM
ip->blkcnt++; blockcnt[ip->type]++; return; }//@
ENDVERBATIM
AHP = AHP - ahpwt
tmp=t
: note that jtt indicates jitter while jit indicates 'just-in-time'
VERBATIM
if (ip->jttr)
ENDVERBATIM
{ tmp= t+jttr() }
VERBATIM
//printf("spk t = %g\n",_ltmp); //@
ENDVERBATIM
VERBATIM
//printf("a ip->pg->lastspk[%d]=%g\n",ip->id,ip->pg->lastspk[ip->id]); //@
ENDVERBATIM
VERBATIM
ip->pg->lastspk[ip->id]=_ltmp; //@
ENDVERBATIM
VERBATIM
//printf("b ip->pg->lastspk[%d]=%g\n",ip->id,ip->pg->lastspk[ip->id]); //@
ENDVERBATIM
if (jcn) {
jitcon(tmp)
VERBATIM
if(ip->out)
ENDVERBATIM
{ net_event(tmp) }
} else { net_event(tmp) }
VERBATIM
spikes[ip->type]++; //@
ENDVERBATIM
spck=spck+1
VERBATIM
if (ip->dbx>0)
ENDVERBATIM
{pid() printf("DBD: %g>VTH(%g) event at %g (STDf=%g)\n",Vm,VTHC,tmp,STDf)}
VERBATIM
if (ip->record)
ENDVERBATIM
{ recspk(tmp) }
VERBATIM
if (ip->wrec)
ENDVERBATIM
{ wrecord(tmp) }
VTHC=VTH+RRWght*(Vblock-VTH):increase threshold for relative refrac. period
VTHR=VTHC :starting thresh value for relative refrac period, keep track of it
refractory = 1 : abs. refrac on = don't allow any more spikes/bursts to begin (even for IB cells)
if(seadsetting==3 && plastinc>0.) { : apply learning rule
if(plaststartT<0 || plastendT<0 || (t>=plaststartT && t<=plastendT)) { : make sure plasticity on now
VERBATIM
if(ip->dbx<-1) printf("%d@%g applyplast\n",ip->id,ip->pg->lastspk[ip->id]); //@
ENDVERBATIM
VERBATIM
applyplast(ip,ip->pg->lastspk[ip->id],1.0,plastinc); //@
ENDVERBATIM
net_send(maxplastt, 6) : event to check for synaptic depression -- not completely accurate
}
}
if (nbur>1) {
cbur=nbur-1 net_send(tbur,4) : this is main source of burst events - A.P. firing with bursting
VERBATIM
return; //@ done
ENDVERBATIM
}
VERBATIM
if (ip->vbr && Vm>Vblock)
ENDVERBATIM
{
net_send(Vbrefrac,3)
VERBATIM
if (ip->dbx>0)
ENDVERBATIM
{pid() printf("DBE: %g %g\n",Vbrefrac,Vm)}
VERBATIM
return; //@ done
ENDVERBATIM
}
net_send(refrac, 3) :event for end of abs. refrac., sent separately for IB cells @ end of burst
}
}
:* ancillary functions
:** jitcon() creates divergence and delays from rand seed
: jcn flags:
: 0 NetCons jcn==0
: 3 Jitcon without jitevent jcn==3 -- eliminated after v669
: 2 Jitcon with callback jcn==2 -- NOT DEBUGGED
: 1 Jitcon with callback with pointers jcn==1
PROCEDURE jitcon (tm) {
VERBATIM {
double mindel, randel, idty, *x; int prty, poty, i, j, k, dv;
Point_process *pnt; IvocVect* voi;
// qsz = nrn_event_queue_stats(stt);
// if (qsz>=qlimit) { printf("qlimit %g exceeded at t=%g\n",qlimit,t); qlimit*=2; }
ip=IDP; pg=ip->pg;
if(verbose>1) printf("col %d , ip %p, pg %p\n",ip->col,ip,pg);
if (!pg) {printf("No network defined -- must run jitcondiv()\n"); hxe();}
ip->spkcnt++; // jitcon() called from NET_RECEIVE which sets ip
if (pg->jrj<pg->jrmax) { // record spike time and cell ID
pg->jrid[pg->jrj]=(double)ip->id; pg->jrtv[pg->jrj]=_ltm;
pg->jrj++;
} else if (wf2 && pg->jrmax) spkoutf2(); // saving spike times
pg->jri++; // keep track of number of spikes
if (jrtm>0) {
if (t>jrtime) {
jrtime+=jrtm;
spkstats2(1.);
}
} else if (jrsvd>0 && pg->jri>jrsvn) {
jrsvn+=jrsvd; printf("t=%.02f %ld ",t,ip->pg->jri);
spkstats2(1.);
}
prty=(int)ip->type;
if (ip->jcn==1) if (ip->dvt>0) { // first callback
#if defined(t)
if (ip->jcn==1) if (ip->dvt>0) net_send((void**)0x0, wts,tpnt,t+ip->del[0],-1.);
#else
if (ip->jcn==1) if (ip->dvt>0) net_send((void**)0x0, wts,tpnt,ip->del[0],-1.);
#endif
}
}
ENDVERBATIM
}
: call spkstat from hoc to set global tf if desired for spkstats to file
PROCEDURE spkstats () {
VERBATIM {
if (ifarg(1)) tf=hoc_obj_file_arg(1); else tf=0x0;
}
ENDVERBATIM
}
: spkoutf() use wf2 for output of indices and times
PROCEDURE spkoutf () {
VERBATIM {
if (ifarg(2)) {
wf1=hoc_obj_file_arg(1); // index file
wf2=hoc_obj_file_arg(2);
} else if (wf1 != 0x0) {
spkoutf2();
wf1=(FILE*)0x0; wf2=(FILE*)0x0;
}
}
ENDVERBATIM
}
VERBATIM
static void spkoutf2 () {
fprintf(wf1,"//b9 -2 t%0.2f %ld %ld\n",t/1e3,pg->jrj,ftell(wf2));
fwrite(pg->jrtv,sizeof(double),pg->jrj,wf2); // write times
fwrite(pg->jrid,sizeof(double),pg->jrj,wf2); // write id
fflush(wf1); fflush(wf2);
pg->jrj=0;
}
ENDVERBATIM
PROCEDURE callhoc () {
VERBATIM
if (ifarg(1)) {
cbsv=hoc_lookup(gargstr(1));
} else {
cbsv=0x0;
}
ENDVERBATIM
}
: flag 1 means print it to a file, 2 means to both places
PROCEDURE spkstats2 (flag) {
VERBATIM {
int i, ix, flag; double clk;
ip=IDP; pg=ip->pg;
flag=(int)(_lflag+1e-6);
clk=clock()-savclock; savclock=clock();
if (cbsv) hoc_call_func(cbsv,0);
if (tf) fprintf(tf,"t=%.02f;%ld(%g) ",t,pg->jri,clk/1e6); else {
printf("t=%.02f;%ld(%g) ",t,pg->jri,clk/1e6); }
for (i=0;i<CTYN;i++) {
ix=cty[i];
pg->spktot+=spikes[ix];
if (tf) {
fprintf(tf,"%s:%d/%d:%d;%d;%d;%d;%d;%d ",CNAME[i],spikes[ix],\
blockcnt[ix],AMo[ix],NMo[ix],GAo[ix],AMo2[ix],NMo2[ix],GAo2[ix]);
} else {
printf("%s:%d/%d:%d;%d;%d;%d;%d;%d ",CNAME[i],spikes[ix],blockcnt[ix],\
AMo[ix],NMo[ix],GAo[ix],AMo2[ix],NMo2[ix],GAo2[ix]);
}
spck=0;
blockcnt[ix]=spikes[ix]=0;
AMo[ix]=NMo[ix]=GAo[ix]=AMo2[ix]=NMo2[ix]=GAo2[ix]=0;
}
if (tf && flag==2) { fprintf(tf,"\nt=%g tot_spks: %ld; tot_events: %ld\n",t,pg->spktot,pg->eventtot);
} else if (flag==2) { printf("\ntotal spikes: %ld; total events: %ld\n",pg->spktot,pg->eventtot);
} else if (tf) fprintf(tf,"\n"); else printf("\n");
}
ENDVERBATIM
}
PROCEDURE oobpr () {
VERBATIM {
int i,ix;
for (i=0;i<CTYN;i++){
ix=cty[i];
printf("%d:%d/%d:%d;%d;%d;%d;%d;%d ",ix,spikes[ix],blockcnt[ix],\
AMo[ix],NMo[ix],GAo[ix],AMo2[ix],NMo2[ix],GAo2[ix]);
}
printf("\n");
}
ENDVERBATIM
}
PROCEDURE callback (fl) {
VERBATIM {
int i; double idty, idtflg, del0, ddel; id0 *jp; Point_process *upnt; // these must be local
i=(unsigned int)((-_lfl)-1); // -1,-2,-3 -> 0,1,2
jp=IDP; upnt=tpnt; del0=jp->del[i]; ddel=0.;
idty=(double)(FOFFSET+jp->id)+1e-2*(double)jp->type+1e-3*(double)jp->inhib+1e-4;
while (ddel<=DELMIN) { // check if this del is worth waiting, else just send now
if (Vblock<VTHC) {
wts[0]=0; // send [0,1] for STD
} else { // STDf=(1-STD)
wts[0]=(VTHC-VTH)/(Vblock-VTH); // just send [0,1] for STD
}
if(seadsetting==3 && !jp->inhib) wts[1]=jp->wgain[i]; else wts[1]=0.0; // send plasticity gain?
if(wsetting==1.0 && jp->syw1 && jp->syw2) {wts[2]=jp->syw1[i]; wts[3]=jp->syw2[i]; } // non-MATRIX weights?
idtflg = idty + (1e-5 * jp->syns[i]);
// if(1) printf("s = %g : flg = %.10f\n",(1e-5*jp->syns[i]),idtflg);
if (jp->sprob[i]) (*pnt_receive[get_type(jp->dvi[i]->_prop)])(jp->dvi[i], wts, idtflg);
#ifdef NRN_MECHANISM_DATA_IS_SOA
neuron::legacy::set_globals_from_prop(upnt->_prop, _ml_real, _ml, _iml);
#else
_p = upnt->_prop->param;
#endif
_ppvar = get_dparam(upnt->_prop); // restore pointers
i++;
if (i>=jp->dvt) return 0; // ran out
ddel=jp->del[i]-del0; // delays are relative to event; use difference in delays
}
// skip over pruned outputs and dead cells:
while (i<jp->dvt && (!jp->sprob[i] || id0ptr(jp->dvi[i]->_prop)->dead)) i++;
if (i<jp->dvt) {
ddel= jp->del[i] - del0;;
#if defined(t)
net_send((void**)0x0, wts,upnt,t+ddel,(double) -(i+1)); // next callback
#else
net_send((void**)0x0, wts,upnt,ddel,(double) -(i+1)); // next callback
#endif
}
}
ENDVERBATIM
}
: DEAD_DIV not checked in mkdvi()
: mkdvi() create the connectivity vectors for a random network
PROCEDURE mkdvi () {
VERBATIM {
int i,j,k,prty,poty,dv,dvt,dvii; double *x, *db, *dbs;
Object *lb; Point_process *pnnt, **da, **das;
ip=IDP; pg=ip->pg;//this should only be called after jitcondiv()
if (ip->dead) return 0;
prty=ip->type;
sead=GetDVIDSeedVal(ip->id);//seed for divergence and delays
for (i=0,k=0,dvt=0;i<CTYN;i++) { // dvt gives total divergence
poty=cty[i];
dvt+=DVG(prty,poty);
}
da =(Point_process **)malloc(dvt*sizeof(Point_process *));
das=(Point_process **)malloc(dvt*sizeof(Point_process *)); // das,dbs for after sort
db =(double *)malloc(dvt*sizeof(double)); // delays
dbs=(double *)malloc(dvt*sizeof(double)); // delays
for (i=0,k=0,dvii=0;i<CTYN;i++) { // cell types in cty[]
poty=cty[i];
dv=DVG(prty,poty);
if (dv>0) {
sead+=dv;
if (dv>dscrsz) {
printf("B:Divergence exceeds dscrsz: %d>%d for %d->%d\n",dv,dscrsz,prty,poty); hxe(); }
mcell_ran4(&sead, dscr , dv, pg->ixe[poty]-pg->ix[poty]+1);
for (j=0;j<dv;j++) {
if (!(lb=ivoc_list_item(pg->ce,(unsigned int)floor(dscr[j]+pg->ix[poty])))) {
printf("INTF6:callback %g exceeds %d for list ce\n",floor(dscr[j]+pg->ix[poty]),pg->cesz);
hxe(); }
pnnt=(Point_process *)lb->u.this_pointer;
da[j+dvii]=pnnt;
}
mcell_ran4(&sead, dscr , dv, 2*DELD(prty,poty));
for (j=0;j<dv;j++) {
db[j+dvii]=dscr[j]+DELM(prty,poty)-DELD(prty,poty); // +/- DELD
if (db[j+dvii]<0) db[j+dvii]=-db[j+dvii];
}
dvii+=dv;
}
}
gsort2(db,da,dvt,dbs,das);
ip->del=dbs; ip->dvi=das; ip->dvt=dvt; ip->syns=(char*)calloc(dvt,sizeof(char));
ip->sprob=(unsigned char *)malloc(dvt*sizeof(char *)); // release probability
for (i=0;i<dvt;i++) ip->sprob[i]=1; // start out with all firing
free(da); free(db); // keep das,dbs which are assigned to ip->dvi bzw ip->del
}
ENDVERBATIM
}
:* paths
PROCEDURE patha2b () {
VERBATIM
int i; double idty, *x; static Point_process *_pnt; static id0 *ip0;
ip=IDP; pg=ip->pg;
pathbeg=*getarg(1); pathidtarg=*getarg(2);
pathtytarg=-1; PATHMEASURE=1; pathlen=stopoq=0;
for (i=0;i<pg->cesz;i++) { lop(pg->ce,i);
if ((i==pathbeg || i==pathidtarg) && qp->inhib) {
pid(); printf("Checking to or from inhib cell\n" ); hxe(); }
qp->flag=qp->vinflg=0;
}
hoc_call_func(hoc_lookup("finitialize"), 0);
cvode_fadvance(1000.0); // this call will not return
ENDVERBATIM
}
:* paths
: pathgrps(vpre,vpos,vout) finds path lengths from pres to posts
FUNCTION pathgrps () {
VERBATIM
int i,j,k,na,nb,flag; double idty,*a,*b,*x,sum; static Point_process *_pnt; static id0 *ip0;
Symbol* s; char **pfl;
ip=IDP; pg=ip->pg;
x=0x0;
s=hoc_lookup("finitialize");
if (ifarg(2)) {
na=vector_arg_px(1,&a);
nb=vector_arg_px(2,&b);
if (ifarg(3)) x=vector_newsize(vector_arg(3),na*nb);
} else {
na=nb=pg->cesz; // may want to put output into an unsigned char eventually
if (ifarg(1)) x=vector_newsize(vector_arg(1),na*nb);
}
// if (scrsz<cesz) scrset(cesz);
pfl = (char **)malloc(pg->cesz * (unsigned)sizeof(char *));
for (i=0;i<pg->cesz;i++) { lop(pg->ce,i); scr[i]=qp->inhib; pfl[i]=&qp->flag; }
pathtytarg=-1; PATHMEASURE=1; pathlen=stopoq=0;
for (k=0,sum=0;k<na;k++) {
pathbeg=a[k];
if (scr[(int)pathbeg]) {
if (x) for (j=0;j<nb;j++) x[k*nb+j]=0.;
continue;
}
for (j=0;j<nb;j++) {
pathidtarg=b[j];
if (scr[(int)pathidtarg]) { if (x) x[k*nb+j]=0.;
continue;
}
// for (i=0;i<cesz;i++) {lop(ce,i); qp->flag=0;}
for (i=0;i<pg->cesz;i++) *pfl[i]=0;
hoc_call_func(s, 0);
cvode_fadvance(1000.0); // this call will not return
sum+=pathlen;
if (x) x[k*nb+j]=pathlen;
}
}
PATHMEASURE=0;
free(pfl);
_lpathgrps=sum/na/nb;
ENDVERBATIM
}
:* intf.getdvi() get divergence (& optionally associated vectors)
: intf.getdvi(index_vec,delay_vec[,prob_vec,wt1vec,wt2vec,distalsyns,wgain]) -- need both wt1vec and wt2vec
: index = postsynaptic IDs, delay = delay, prob = probability of firing, wt1/wt2 are base weights,
: distalsyns=distal/prox synapse,wgain is multiplier from plasticity/learning
: other forms of this function call:
: intf.getdvi(getactive.flag,vecs) with flag==1 return types instead of ids
: intf.getdvi(getactive.flag,vecs) with flag==2 then sum up number of each type
: intf.getdvi(getactive.flag,vecs) with flag==3 return column instead of ids
: with getactive flag ignores pruned connections ie 1.2 is getactive==1 and flag==2
FUNCTION getdvi () {
VERBATIM
{
int i,j,k,iarg,av1,a2,a3,a4,a6,a7,dvt,getactive=0,idx=0,*pact,prty,poty,sy,ii;
double *dbs, *x,*x1,*x2,*x3,*x4,*x5,*x6,*x7,idty,y[2],flag;
IvocVect* voi, *voi2,*voi3; Point_process **das;
ip=IDP; pg=ip->pg;
getactive=a2=a3=a4=0;
if (ip->dead) return 0.0;
dvt=ip->dvt;
dbs=ip->del; das=ip->dvi;
_lgetdvi=(double)dvt;
if (!ifarg(1)) return _lgetdvi; // just return the divergence value
iarg=1;
if (hoc_is_double_arg(iarg)) {
av1=2;
flag=*getarg(iarg++);
getactive=(int)flag;
flag-=(double)getactive; // flag is in the decimal place 1.2 has flag of 2
if (flag!=0) flag=floor(flag*10+hoc_epsilon); // avoid roundoff error
} else av1=1; // 1st vector arg
//just get active postsynapses (not dead and non pruned)
voi=vector_arg(iarg++);
if (flag==2) { x1=vector_newsize(voi,CTYPi); for (i=0;i<CTYPi;i++) x1[i]=0;
} else x1=vector_newsize(voi,dvt);
if (ifarg(iarg)) { voi=vector_arg(iarg++); x2=vector_newsize(voi,dvt); a2=1; }
if (ifarg(iarg)) { voi=vector_arg(iarg++); x3=vector_newsize(voi,dvt); a3=1;}
if (ifarg(iarg)) { // need 2 weight vecs for AM/NM or GA/GB
voi=vector_arg(iarg++); x4=vector_newsize(voi,dvt); a4=1;
voi=vector_arg(iarg++); x5=vector_newsize(voi,dvt);
}//for prox vs dist syn vec
if (ifarg(iarg)) { voi=vector_arg(iarg++); x6=vector_newsize(voi,dvt); a6=1;} else a6=0;
if (ifarg(iarg)) { voi=vector_arg(iarg++); x7=vector_newsize(voi,dvt); a7=1;} else a7=0;//plasticity wgain
idty=(double)(FOFFSET+ip->id)+1e-2*(double)ip->type+1e-3*(double)ip->inhib+1e-4;
prty=ip->type; sy=ip->inhib?GA:AM;
for (i=0,j=0;i<dvt;i++) {
qp = id0ptr(das[i]->_prop); // #define sop *_ppvar[2].pval
if (getactive && (qp->dead || ip->sprob[i]==0)) continue;
if (flag==1) { x1[j]=(double)qp->type;
} else if (flag==2) { x1[qp->type]++;
} else if (flag==3) { x1[j]=(double)qp->col;
} else x1[j]=(double)qp->id;
if (a2) x2[j]=dbs[i];
if (a3) x3[j]=(double)ip->sprob[i];
if (a4) {
if(ip->inhib){sy=ip->syns[i]?GA2:GA;} else {sy=ip->syns[i]?AM2:AM;}
poty = qp->type;
if (seadsetting==2) { // no randomization
for(ii=0;ii<2;ii++) y[ii]=WMAT(prty,poty,sy+ii)*WD0(prty,poty,sy+ii);
} else {
if (seadsetting==1) { // old sead setting
sead=(unsigned int)(FOFFSET+ip->id)*qp->id*seedstep;
} else { // hashed sead setting
hsh[0]=(double)(FOFFSET+ip->id); hsh[1]=(double)(qp->id); hsh[2]=seedstep;
sead=hashseed2(3, hsh);
}
mcell_ran4(&sead, y, 2, 1.);
for(ii=0;ii<2;ii++) {
y[ii]=2*WVAR*(y[ii]+0.5/WVAR-0.5)*WMAT(prty,poty,sy+ii)*WD0(prty,poty,sy+ii); }
}
x4[j]=y[0]; x5[j]=y[1];
}
if (a6) x6[j] = ip->syns[i]; // distal / prox syns
if (a7 && ip->wgain) x7[j] = ip->wgain[i]; // weight gain as from plasticity
j++;
}
if (flag!=2 && j!=dvt) for (i=av1;i<iarg;i++) vector_resize(vector_arg(i),j);
_lgetdvi=(double)j;
}
ENDVERBATIM
}
: intf.getconv(getactive.flag,vecs) with flag==1 return types instead of ids
: flags getactive.flag flag==2 then sum up number of each type
FUNCTION getconv () {
VERBATIM
{
int iarg,i,j,k,dvt,sz,prfl,getactive; double *x,flag;
IvocVect* voi; Point_process **das; id0 *pp;
ip=IDP; pg=ip->pg; // this should only be called after jitcondiv()
sz=ip->dvt; // // assume conv similar to div
getactive=0;
if (ifarg(iarg=1) && hoc_is_double_arg(iarg)) {
flag=*getarg(iarg++);
getactive=(int)flag;
flag-=(double)getactive; // flag is in the decimal place 1.2 has flag of 2
if (flag!=0) flag=floor(flag*10+hoc_epsilon);
}
if (!ifarg(iarg)) prfl=0; else { prfl=1;
voi=vector_arg(iarg);
if (flag==2.) { x=vector_newsize(voi,CTYPi); for (i=0;i<CTYPi;i++) x[i]=0;
} else x=vector_newsize(voi,sz);
}
for (i=0,k=0; i<pg->cesz; i++) {
lop(pg->ce,i);
if (getactive && qp->dead) continue;
dvt=qp->dvt; das=qp->dvi;
for (j=0;j<dvt;j++) {
if (getactive && qp->sprob[j]==0) continue;
if (ip == id0ptr(das[j]->_prop)) {
if (prfl) {
if (flag!=2.0 && k>=sz) x=vector_newsize(voi,sz*=2);
if (flag==1.0) { x[k]=(double)qp->type;
} else if (flag==2.0) { x[qp->type]++;
} else x[k]=(double)qp->id;
}
k++;
break;
}
}
}
if (prfl && flag!=2) vector_resize(voi,k);
_lgetconv=(double)k;
}
ENDVERBATIM
}
: INTF6[0].adjlist(List,[startid,endid,exonly])
: returns adjacency list in first arg
: startid == optional 2nd arg specifies id from which to start
: endid == optional 3rd arg specifies id to end with
: exonly == optional 4th arg specifies to only store excitatory synapse information
FUNCTION adjlist () {
VERBATIM
Object* pList = *hoc_objgetarg(1);
ip=IDP; pg=ip->pg;
int iListSz=ivoc_list_count(pList),iCell,iStartID=ifarg(2)?*getarg(2):0,\
iEndID=ifarg(3)?*getarg(3):pg->cesz-1;
int skipinhib = ifarg(4)?*getarg(4):0, i,j,nv,*pused=(int*)calloc(pg->cesz,sizeof(int)),iSyns=0;
double **vvo = (double**)malloc(sizeof(double*)*iListSz),\
*psyns=(double*)calloc(pg->cesz,sizeof(double));
id0* rp;
for(iCell=iStartID;iCell<=iEndID;iCell++){
if(verbose && iCell%1000==0) printf("%d ",iCell);
lop(pg->ce,iCell);
if(!qp->dvt || (skipinhib && qp->inhib)){
list_vector_resize(pList,iCell,0);
continue;
}
iSyns=0;
for(j=0;j<qp->dvt;j++){
rp = id0ptr(qp->dvi[j]->_prop); // #define sop *_ppvar[2].pval
if(skipinhib && rp->inhib) continue; // if skip inhib cells...
if(!rp->dead && qp->sprob[j]>0. && !pused[rp->id]){
pused[rp->id]=1;
psyns[iSyns++]=rp->id;
}
}
list_vector_resize(pList, iCell, iSyns);
list_vector_px(pList, iCell, &vvo[iCell]);
memcpy(vvo[iCell],psyns,sizeof(double)*iSyns);
for(j=0;j<iSyns;j++)pused[(int)psyns[j]]=0;
}
free(vvo); free(pused); free(psyns);
if (verbose) printf("\n");
return 1.0;
ENDVERBATIM
}
FUNCTION rddvi () {
VERBATIM
Point_process *pnnt;
FILE* fp;
int i, iCell;
unsigned int iOutID;
Object* lb;
fp=hoc_obj_file_arg(1);
ip=IDP; pg=ip->pg;
printf("reading: ");
for(iCell=0;iCell<pg->cesz;iCell++){
if(iCell%1000==0)printf("%d ",iCell);
lop(pg->ce,iCell);
int ret;
ret = fread(&qp->id,sizeof(unsigned int),1,fp); // read id
ret = fread(&qp->type,sizeof(unsigned char),1,fp); // read type id
ret = fread(&qp->col,sizeof(unsigned int),1,fp); // read column id
ret = fread(&qp->dead,sizeof(unsigned char),1,fp); // read alive/dead status
ret = fread(&qp->dvt,sizeof(unsigned int),1,fp); // read divergence size
//free up old pointers
if(qp->del){ free(qp->del); free(qp->dvi); free(qp->sprob);
qp->dvt=0; qp->dvi=(Point_process**)0x0; qp->del=(double*)0x0; qp->sprob=(unsigned char *)0x0; }
//if divergence == 0 , continue
if(!qp->dvt) continue;
qp->dvi = (Point_process**)malloc(sizeof(Point_process*)*qp->dvt);
for(i=0;i<qp->dvt;i++){
ret = fread(&iOutID,sizeof(unsigned int),1,fp); // id of output cell
if (!(lb=ivoc_list_item(pg->ce,iOutID))) {
printf("INTF6:callback %d exceeds %d for list ce\n",iOutID,pg->cesz); hxe(); }
qp->dvi[i]=(Point_process *)lb->u.this_pointer;
}
qp->del = (double*)malloc(sizeof(double)*qp->dvt);
ret = fread(qp->del,sizeof(double),qp->dvt,fp); // read divergence delays
qp->sprob = (unsigned char*)malloc(sizeof(unsigned char)*qp->dvt);
ret = fread(qp->sprob,sizeof(unsigned char),qp->dvt,fp); // read divergence firing probabilities
}
printf("\n");
return 1.0;
ENDVERBATIM
}
FUNCTION svdvi () {
VERBATIM
Point_process *pnnt;
FILE* fp;
int i , iCell;
fp=hoc_obj_file_arg(1);
ip=IDP; pg=ip->pg;
printf("writing: ");
for(iCell=0;iCell<pg->cesz;iCell++){
if(iCell%1000==0)printf("%d ",iCell);
lop(pg->ce,iCell);
fwrite(&qp->id,sizeof(unsigned int),1,fp); // write id
fwrite(&qp->type,sizeof(unsigned char),1,fp); // write type id
fwrite(&qp->col,sizeof(unsigned int),1,fp); // write column id
fwrite(&qp->dead,sizeof(unsigned char),1,fp); // write alive/dead status
fwrite(&qp->dvt,sizeof(unsigned int),1,fp); // write divergence size
if(!qp->dvt)continue; //don't write empty pointers if no divergence
for(i=0;i<qp->dvt;i++){
pnnt=qp->dvi[i];
fwrite(&(id0ptr(pnnt->_prop)->id), sizeof(unsigned int), 1, fp); // id of output cell
}
fwrite(qp->del,sizeof(double),qp->dvt,fp); // write divergence delays
fwrite(qp->sprob,sizeof(unsigned char),qp->dvt,fp); // write divergence firing probabilities
}
printf("\n");
return 1.0;
ENDVERBATIM
}
: INTF6[0].setdvir(wiringlist,delaylist[,flag]) // flag default is 0 to pass to setdvi2()
: INTF6[0].setdvir(wiringlist,delaylist,startid,endid)
: INTF6[0].setdvir(wiringlist,delaylist,startid,endid,flag)
: INTF6[0].setdvir(wiringlist,delaylist,idvec,flag)
: should either use just with flag == 0 to setup all dvi outputs of cells
: or with flag == 1 to incrementally setup outputs from cells and on the last
: set of outputs from a range of cells call with flag == 2 to setup sprob and sort dvi list
: alternatively, can call setdvir with flag == 1, and at end just call INTF6.finishdvir to finalize
FUNCTION setdvir () {
VERBATIM
ListVec* pListWires,*pListDels;
int i,dn,flag,dvt,idvfl,iCell,iStartID,iEndID,nidv,end;
double *y, *d, *idvec; unsigned char pdead;
ip=IDP; pg=ip->pg;
pListWires = AllocListVec(*hoc_objgetarg(1));
idvfl=flag=0; iStartID=0; iEndID=pg->cesz-1;
if(!pListWires){printf("setalldvi ERRA: problem initializing wires list arg!\n"); hxe();}
pListDels = AllocListVec(*hoc_objgetarg(2));
if(!pListDels){ printf("setalldvi ERRA: problem initializing delays list arg!\n");
FreeListVec(&pListWires); hxe(); }
if (ifarg(3) && !ifarg(4)) {
flag=(int)*getarg(3);
} else if (hoc_is_double_arg(3)) {
iStartID=(int)*getarg(3);
iEndID = (int)*getarg(4);
if(ifarg(5)) flag=(int)*getarg(5);
} else {
nidv=vector_arg_px(3, &idvec);
idvfl=1;
if (ifarg(4)) flag=(int)*getarg(4);
}
end=idvfl?nidv:(iEndID-iStartID+1);
for (i=0;i<end;i++) {
if(i%1000==0) printf("%d",i/1000);
iCell=idvfl?idvec[i]:(iStartID+i);
lop(pg->ce,iCell);
if (qp->dead) continue;
y=pListWires->pv[i]; dvt=pListWires->plen[i];
if(!dvt) continue; //skip empty div lists
d=pListDels->pv[i]; dn=pListDels->plen[i];
if (dn!=dvt) {printf("setdvir() ERR vec sizes for wire,delay list entries not equal %d: %d %d\n",i,dvt,dn); hxe();}
setdvi2(y,d,0x0,dvt,flag);
}
FreeListVec(&pListWires);
FreeListVec(&pListDels);
return 1.0;
ENDVERBATIM
}
PROCEDURE clrdvi () {
VERBATIM
int i;
ip=IDP; pg=ip->pg;
for (i=0;i<pg->cesz;i++) {
lop(pg->ce,i);
if (qp->dvt!=0x0) {
free(qp->dvi); free(qp->del); free(qp->sprob);
qp->dvt=0; qp->dvi=(Point_process**)0x0; qp->del=(double*)0x0; qp->sprob=(unsigned char *)0x0;
}
}
ENDVERBATIM
}
: int.setdviv(prevec,postvec,delvec)
FUNCTION setdviv () {
VERBATIM
int i,j,k,l,nprv,dvt; double *prv,*pov,*dlv,x,*ds; char* s;
ip=IDP; pg=ip->pg;
nprv=vector_arg_px(1, &prv);
i=vector_arg_px(2, &pov);
j=vector_arg_px(3, &dlv);
s=0x0;
if(ifarg(4)) { s=(char*)calloc((l=vector_arg_px(4,&ds)),sizeof(char)); for(k=0;k<l;k++) s[k]=ds[k]; k=0;}
if (nprv!=i || i!=j) {printf("intf:setdviv ERRA: %d %d %d\n",nprv,i,j); hxe();}
// start by counting the prids so will know the size that we need for realloc()
if (scrsz<pg->cesz) scrset(pg->cesz);
for (i=0;i<pg->cesz;i++) scr[i]=0;
for (i=0,j=-1;i<nprv;i++) {
if (j>(int)prv[i]){printf("intf:setdviv ERRA vecs should be sorted by prid vec\n");hxe();}
j=(int)prv[i];
scr[j]++;
}
for (i=0,x=-1,k=0;i<nprv;i+=dvt) { if(i%1000==0) printf(".");
if (prv[i]!=x) lop(pg->ce,(unsigned int)(x=prv[i]));
if (qp->dead) continue;
dvt=scr[(int)x]; // number of these presyns
setdvi2(pov+k,dlv+k,s?s+k:0x0,dvt,1);
k+=dvt;
}
if(s) free(s);
return (double)k;
ENDVERBATIM
}
: intf.setsywv(weight vector 1, weight vector 2)
FUNCTION setsywv () {
VERBATIM
int sz,n1,n2; double *psyw1,*psyw2; id0* ip;
ip=IDP; pg=ip->pg; sz=ip->dvt;
if((n1=vector_arg_px(1, &psyw1))!=sz || (n2=vector_arg_px(2, &psyw2))!=sz) {
printf("setsywv ERRA: make sure weight vector sizes (%d,%d) same size as div(%d)\n",n1,n2,sz);
return 0.0;
}
if(!ip->syw1) // setup pointers
ip->syw1=(double*)calloc(sz,sizeof(double));
else ip->syw1=(double*)realloc((double*)ip->syw1,sz*sizeof(double));
if(!ip->syw2)
ip->syw2=(double*)calloc(sz,sizeof(double));
else ip->syw2=(double*)realloc((double*)ip->syw2,sz*sizeof(double));
memcpy(ip->syw1,psyw1,sizeof(double)*sz); // copy
memcpy(ip->syw2,psyw2,sizeof(double)*sz);
return sz;
ENDVERBATIM
}
: intf.getsywv(weight vector 1, weight vector 2)
FUNCTION getsywv () {
VERBATIM
int sz,n1,n2; double *psyw1,*psyw2; id0* ip;
ip=IDP; pg=ip->pg; sz=ip->dvt;
if(!ip->syw1 || !ip->syw2) {
printf("getsywv ERRA: syw1,syw2 were never initialized with setsywv!\n");
return 0.0;
}
if((n1=vector_arg_px(1, &psyw1))!=sz || (n2=vector_arg_px(2, &psyw2))!=sz) {
printf("getsywv ERRB: make sure weight vector sizes (%d,%d) same size as div(%d)\n",n1,n2,sz);
return 0.0;
}
memcpy(psyw1,ip->syw1,sizeof(double)*sz); // copy
memcpy(psyw2,ip->syw2,sizeof(double)*sz);
return sz;
ENDVERBATIM
}
VERBATIM
// get presynaptic excitatory cells in a double*, psz[0] has size
int* getpeconv (id0* ip,int* psz) {
Point_process **das; int* pfrom;
int i,j,k,dvt;
*psz=ip->dvt; pg=ip->pg;
pfrom=(int*) calloc(psz[0],sizeof(int));
for (i=0,k=0; i<pg->cesz; i++) {
lop(pg->ce,i);
if(qp->inhib) continue; // skip presynaptic inhib cells
dvt=qp->dvt;
das=qp->dvi;
for (j=0;j<dvt;j++) {
if (ip == id0ptr(das[j]->_prop)) {
if (k>=*psz) {
psz[0]*=2;
pfrom=(int*) realloc((void*)pfrom,psz[0]*sizeof(int));
}
pfrom[k]=qp->id;
k++;
break;
}
}
}
*psz=k;
return pfrom;
}
int myfindidx (id0* ppre,int poid) {
int i; Point_process** das; id0* ppo;
das=ppre->dvi;
for(i=0;i<ppre->dvt;i++) {
ppo = id0ptr(das[i]->_prop); // #define sop *_ppvar[2].pval
if(ppo->id==poid) return i;
}
return -1;
}
// apply plasticity
// ppo is postsynaptic cell, pinc is plasticity change, tau is time-constant
// pospkt == time when postsynaptic cell spiked last
// phase is positive for potentiation and negative for depression
static void applyplast (id0* ppo,double pospkt, double phase, double pinc) {
int poid,prid,sz,i,idx; postgrp* pg; double d,inc,tmp; id0* ppre;
if(seadsetting!=3. || pinc<=0.) return;
poid=ppo->id; pg=ppo->pg;
if(ppo->dbx<-1) printf("applyplast: ppo=%p\n",ppo);
for(i=0;i<ppo->econvsz;i++) { // go through presynaptic E cells
prid = ppo->peconv[i]; // presynaptic id
if(pg->lastspk[prid]<0) continue; // cell didn't spike
d = pospkt - pg->lastspk[prid]; // time difference
if(d*phase<=0 || fabs(d)>maxplastt) continue; // make sure same phase and within time-constraints
if(verbose>2) printf("spk%d:%g, spk%d:%g, d=%g\n",prid,pg->lastspk[prid],poid,pg->lastspk[poid],d);
ppre = getlp(pg->ce,prid); // get pointer to presynaptic cell
idx = myfindidx(ppre,poid); // find the index of poid in ppre's div
if(idx<0){printf("**** applyplast ERR: bad idx = %d!!!!!!!!!\n",idx); return;}
inc = pinc;
if(d < 0.) inc = -inc; // synaptic depression if post spikes before pre
tmp = ppre->wgain[idx]; // temp - holds original wgain level
ppre->wgain[idx] += inc; // increment the wgain of the synapse
if(ppre->wgain[idx]<0.) ppre->wgain[idx]=0.; // check bounds of wgain
else if(ppre->wgain[idx]>maxplastw) ppre->wgain[idx]=maxplastw;
if(verbose>2) printf("%d->%d: inc=%g, wgA=%g, wgB=%g\n",prid,poid,inc,tmp,ppre->wgain[idx]);
}
}
ENDVERBATIM
: intf.geteconv(vec) - get presynaptic E cell IDs
FUNCTION geteconv () {
VERBATIM
int i; double *x; IvocVect *voi;
ip=IDP; pg=ip->pg;
if(!ip->peconv) ip->peconv=getpeconv(ip,&ip->econvsz);
voi=vector_arg(1);
x=vector_newsize(voi,ip->econvsz);
for(i=0;i<ip->econvsz;i++) x[i]=(double)ip->peconv[i];
return ip->econvsz;
ENDVERBATIM
}
: finishdvi2 () -- finalize dvi , sort dvi , allocate and set sprob
VERBATIM
static void finishdvi2 (struct ID0* p) {
Point_process **da,**das;
double *db,*dbs;
char *syns,*synss;
int i, dvt;
db=p->del;
da=p->dvi;
dvt=p->dvt;
syns=p->syns;
dbs=(double*)malloc(dvt*sizeof(double)); // sorted delays
das=(Point_process**)malloc(dvt*sizeof(Point_process*)); // parallel sorted dvi
synss=(char*)malloc(dvt*sizeof(char)); // sorted syns
gsort3(db,da,syns,dvt,dbs,das,synss);
p->del=dbs; p->dvi=das; p->syns=synss;// sorted versions
free(db); free(da); free(syns);
p->sprob=(unsigned char*)realloc((void*)p->sprob,(size_t)dvt*sizeof(char));// release probability
for (i=0;i<dvt;i++) p->sprob[i]=1; // start out with all firing
p->wgain=(double*)realloc((void*)p->wgain,(size_t)dvt*sizeof(double));//synaptic weight gain
for (i=0;i<dvt;i++) p->wgain[i]=1.0; // start out at wmat level
p->peconv = getpeconv(p,&p->econvsz); // get econv
}
ENDVERBATIM
: finalize dvi for all cells
PROCEDURE finishdvir () {
VERBATIM
int iCell;
ip=IDP; pg=ip->pg;
for(iCell=0;iCell<pg->cesz;iCell++){
lop(pg->ce,iCell);
finishdvi2(qp);
}
ENDVERBATIM
}
: finishdvi() -- finalize dvi , sort dvi, allocate and set sprob, for this single cell
PROCEDURE finishdvi () {
VERBATIM
finishdvi2(IDP);
ENDVERBATIM
}
: setdvi(cell#s,dels[,flag]) flag 1: grow internal vecs; flag 2: grow and do final sort
PROCEDURE setdvi () {
VERBATIM {
int i,j,k,dvt,flag; double *d, *y, *ds; char* s;
if (! ifarg(1)) {printf("setdvi(v1,v2[,v3,flag]): v1:cell#s; v2:delays; v3:distal synapses\n"); return 0; }
ip=IDP; pg=ip->pg; // this should only be called after jitcondiv()
if (ip->dead) return 0;
dvt=vector_arg_px(1, &y);
i=vector_arg_px(2, &d);
s=ifarg(3)?(char*)calloc((j=vector_arg_px(3,&ds)),sizeof(char)):0x0;
if(s) for(k=0;k<j;k++) s[k]=(char)ds[k];
if (ifarg(4)) flag=(int)*getarg(4); else flag=0;
if (i!=dvt || i==0 || (j>0 && j!=i)) {printf("setdvi() ERR vec sizes: %d %d %d\n",dvt,i,j); hxe();}
setdvi2(y,d,s,dvt,flag);
}
return 0;
ENDVERBATIM
}
VERBATIM
// setdvi2(divid_vec,del_vec,syns_vec,div_cnt,flag)
// flag 1 means just augment, 0or2: sort by del, 0: clear lists and replace
static void setdvi2 (double *y,double *d,char* s,int dvt,int flag) {
int i,j,ddvi; double *db, *dbs; unsigned char pdead; unsigned int b,e; char* syns;
Object *lb; Point_process *pnnt, **da, **das;
ddvi=(int)DEAD_DIV;
ip=IDP; pg=ip->pg;
if (flag==0) { b=0; e=dvt; // begin to end
if (ip->dvi) {
free(ip->dvi); free(ip->del); free(ip->sprob); free(ip->syns);
ip->dvt=0; ip->dvi=(Point_process**)0x0; ip->del=(double*)0x0; ip->sprob=(unsigned char *)0x0; ip->syns=(char*)0x0;
if(ip->wgain){free(ip->wgain); ip->wgain=0x0;}
if(ip->peconv){free(ip->peconv); ip->peconv=0x0;}
} // make sure all null pointers for realloc
} else {
if (ip->dvt==0) {
ip->dvi=(Point_process**)0x0; ip->del=(double*)0x0; ip->sprob=(unsigned char *)0x0; ip->syns=(char*)0x0;
ip->wgain=0x0; ip->peconv=0x0;
}
b=ip->dvt;
e=ip->dvt+dvt; // dvt is amount to grow
}
da=(Point_process **)realloc((void*)ip->dvi,(size_t)(e*sizeof(Point_process *)));
db=(double*)realloc((void*)ip->del,(size_t)(e*sizeof(double)));
syns=(char*)realloc((void*)ip->syns,(size_t)(e*sizeof(char)));
for (i=b,j=0;j<dvt;j++) { // i thru da[] j thru y, k to append
// div can grow at lower rate if dead cells are encountered
if (!(lb=ivoc_list_item(pg->ce,(unsigned int)y[j]))) {
printf("INTF6:callback %g exceeds %d for list ce\n",y[j],pg->cesz); hxe(); }
pnnt=(Point_process *)lb->u.this_pointer;
if (ddvi==1 || !(pdead = id0ptr(pnnt->_prop)->dead)) {
da[i]=pnnt; db[i]=d[j]; syns[i]=s?s[j]:0; i++;
}
}
if ((dvt=i)<e) { // will need to shrink these arrays
da=(Point_process **)realloc((void*)da,(size_t)(e*sizeof(Point_process *)));
db=(double*)realloc((void*)db,(size_t)(e*sizeof(double)));
syns=(char*)realloc((void*)syns,(size_t)(e*sizeof(char)));
}
ip->dvt=dvt; ip->del=db; ip->dvi=da; ip->syns=syns;
if (flag!=1) finishdvi2(ip); // do sort
}
ENDVERBATIM
: prune(p[,potype,rand_seed]) // prune synapses with prob p [0,1], ie 0.1 prunes 10% of the divergence
: prune(vec) // fill in the pruning vec with binary values from vec
PROCEDURE prune () {
VERBATIM
{
id0* ppost; double *x, p; int nx,j,potype;
ip=IDP; pg=ip->pg;
if (hoc_is_double_arg(1)) { // prune a certain percent of targets
p=*getarg(1);
if (p<0 || p>1) {printf("INTF6:pruneERR0:need # [0,1] to prune [ALL,NONE]: %g\n",p); hxe();}
if (p==1.) printf("INTF6pruneWARNING: pruning 100%% of cell %d\n",ip->id);
if (verbose && ip->dvt>dscrsz) {
printf("INTF6pruneB:Div exceeds dscrsz: %d>%d\n",ip->dvt,dscrsz); hxe(); }
if (p==0.) {
for (j=0;j<ip->dvt;j++) ip->sprob[j]=1; // unprune completely
return 0; // now that unpruning is done, can return
}
potype=ifarg(2)?(int)*getarg(2):-1;
sead=(ifarg(3))?(unsigned int)*getarg(3):GetDVIDSeedVal(ip->id);//seed for divergence and delays
mcell_ran4(&sead, dscr , ip->dvt, 1.0); // random var (0,1)
if(potype==-1){ // prune all types of synapses
for (j=0;j<ip->dvt;j++) if (dscr[j]<p) ip->sprob[j]=0; // prune with prob p
} else { // only prune synapses with postsynaptic type == potype
for (j=0;j<ip->dvt;j++){
ppost = id0ptr(ip->dvi[j]->_prop); // #define sop *_ppvar[2].pval
if (ppost->type==potype && dscr[j]<p) ip->sprob[j]=0; // prune with prob p
}
}
} else { // confusing arg1==0->sprob[j]=1 for all j; but arg1=[0] (a vector)->sprob[0]=0
if (verbose) printf("INTF6 WARNING prune(vec) deprecated: use intf.sprob(vec) instead\n");
nx=vector_arg_px(1,&x);
if (nx!=ip->dvt) {printf("INTF6:pruneERRA:Wrong size vector:%d!=%d\n",nx,ip->dvt); hxe();}
for (j=0;j<ip->dvt;j++) ip->sprob[j]=(unsigned char)x[j];
}
}
return 0;
ENDVERBATIM
}
PROCEDURE sprob () {
VERBATIM
{
double *x; int nx,j;
ip=IDP; pg=ip->pg;
nx=vector_arg_px(1,&x);
if (nx!=ip->dvt) {printf("INTF6:pruneERRA:Wrong size vector:%d!=%d\n",nx,ip->dvt); hxe();}
if (ifarg(2)) { // "GET"
if (!hoc_is_str_arg(2)) { printf("INTF6 sprob()ERRA: only legit 2nd arg is 'GET'\n"); hxe();
} else for (j=0;j<ip->dvt;j++) x[j]=(double)ip->sprob[j];
} else {
for (j=0;j<ip->dvt;j++) ip->sprob[j]=(unsigned char)x[j];
}
}
ENDVERBATIM
}
: turnoff(v1,v2) turn off any connection from a cell in v1 to a cell with number in v2
: a global call that can be called from any INTF6
PROCEDURE turnoff () {
VERBATIM {
int nx,ny,i,j,k,dvt; double poid,*x,*y; Point_process **das; unsigned char off;
ip=IDP; pg=ip->pg;
nx=vector_arg_px(1,&x);
ny=vector_arg_px(2,&y);
if (ifarg(3)) off=(unsigned char)*getarg(3); else off=0;
for (i=0;i<nx;i++) {
lop(pg->ce,(unsigned int)x[i]);
dvt=qp->dvt; das=qp->dvi;
for (j=0;j<dvt;j++) {
ip = id0ptr(das[j]->_prop); // sop is *_ppvar[2].pval
poid=(double)ip->id; // postsyn id
for (k=0;k<ny;k++) {
if (poid==y[k]) {
qp->sprob[j]=off; break;
}
}
}
}
}
ENDVERBATIM
}
VERBATIM
// gsort2() sorts 2 parallel vectors -- delays and Point_process pointers
void gsort2 (double *db, Point_process **da,int dvt,double *dbs, Point_process **das) {
int i;
scr=scrset(dvt);
for (i=0;i<dvt;i++) scr[i]=i;
nrn_mlh_gsort(db, (int*)scr, dvt, cmpdfn);
for (i=0;i<dvt;i++) {
dbs[i]=db[scr[i]];
das[i]=da[scr[i]];
}
}
// gsort3() sorts 3 parallel vectors -- delays and Point_process pointers
void gsort3 (double *db, Point_process **da,char* syns,int dvt,double *dbs, Point_process **das,char* synss) {
int i;
scr=scrset(dvt);
for (i=0;i<dvt;i++) scr[i]=i;
nrn_mlh_gsort(db, (int*)scr, dvt, cmpdfn);//sorts indices in scr
for (i=0;i<dvt;i++) {
dbs[i]=db[scr[i]];
das[i]=da[scr[i]];
synss[i]=syns[scr[i]];
}
}
ENDVERBATIM
PROCEDURE freedvi () {
VERBATIM
{
int i, poty; id0 *jp;
jp=IDP;
if (jp->dvi) {
free(jp->dvi); free(jp->del); free(jp->sprob); free(jp->syns);
if(jp->wgain){free(jp->wgain); jp->wgain=0x0;}
if(jp->peconv){free(jp->peconv); jp->peconv=0x0;}
jp->dvt=0; jp->dvi=(Point_process**)0x0; jp->del=(double*)0x0; jp->sprob=(unsigned char *)0x0; jp->syns=(char *)0x0;
}
}
ENDVERBATIM
}
FUNCTION qstats () {
VERBATIM {
double stt[3]; int lct,flag; FILE* tfo;
if (ifarg(1)) {tfo=hoc_obj_file_arg(1); flag=1;} else flag=0;
lct=cty[IDP->type];
_lqstats = nrn_event_queue_stats(stt);
printf("SPIKES: %d (%ld:%ld)\n",IDP->spkcnt,spikes[lct],blockcnt[lct]);
printf("QUEUE: Inserted %g; removed %g\n",stt[0],stt[2]);
if (flag) {
fprintf(tfo,"SPIKES: %d (%ld:%ld);",IDP->spkcnt,spikes[lct],blockcnt[lct]);
fprintf(tfo,"QUEUE: Inserted %g; removed %g remaining: %g\n",stt[0],stt[2],_lqstats);
}
}
ENDVERBATIM
}
FUNCTION qsz () {
VERBATIM {
double stt[3];
_lqsz = nrn_event_queue_stats(stt);
}
ENDVERBATIM
}
PROCEDURE qclr () {
VERBATIM {
clear_event_queue();
}
ENDVERBATIM
}
: mywmat(from,to,synapse) - return WMAT value from mod side
FUNCTION mywmat () {
VERBATIM {
int i,j,k;
i=(int)*getarg(1);
if(i<0 || i>=CTYPi){printf("mywmat ERR: arg 1=%d out of bounds (0,%d]\n",i,CTYPi); return -1;}
j = (int)*getarg(2);
if(j<0 || j>=CTYPi){printf("mywmat ERR: arg 2=%d out of bounds (0,%d]\n",j,CTYPi); return -1;}
k = (int)*getarg(3);
if(k<0 || k>=STYPi){printf("mywmat ERR: arg3=%d out of bounds (0,%d]\n",k,STYPi); return -1;}
return WMAT(i,j,k);
}
ENDVERBATIM
}
: mywmatpr - print out WMAT from mod side
PROCEDURE mywmatpr () {
VERBATIM {
double wm;
int i,j,k;
char *ct1,*ct2;
ip=IDP; pg=ip->pg;
for(i=0;i<CTYPi;i++) if(ctt(i,&ct1)!=0) {
for(j=0;j<CTYPi;j++) if(ctt(j,&ct2)!=0) {
for(k=0;k<STYPi;k++) {
if((wm=WMAT(i,j,k))>0) {
printf("wmat[%s][%s][%d]=%g\n",ct1,ct2,k,wm);
}
}
}
}
}
ENDVERBATIM
}
: intf.jitcondiv() assigns pointers for hoc symbol storage
PROCEDURE jitcondiv () {
VERBATIM {
Symbol *sym; int i,j; unsigned int sz,colid; char *name;
pg=(postgrp *)calloc(1,sizeof(postgrp));
colid = (int)*getarg(2);
if(ppg==0x0) { // initial allocation
ippgbufsz = 5;
ppg = (postgrp**) calloc(ippgbufsz,sizeof(postgrp*));
inumcols = 1;
} else inumcols++;
if(colid >= ippgbufsz) { // need more memory? then realloc
ippgbufsz *= 2;
ppg = (postgrp**) realloc((void*)ppg,(size_t)ippgbufsz*sizeof(postgrp*));
}
ppg[colid] = pg;
pg->col = colid;
pg->ce = *hoc_objgetarg(1);
sym = hoc_lookup("CTYP");
CTYP = (*(hoc_objectdata[sym->u.oboff].pobj));
if (installed==2.0) { // jitcondiv was previously run
sz=ivoc_list_count(pg->ce);
if (sz==pg->cesz && colid==0) printf("\t**** INTF6 WARNING cesz unchanged: INTF6(s) created off-list ****\n");
} else installed=2.0;
pg->cesz = ivoc_list_count(pg->ce); if(verbose) printf("cesz=%d\n",pg->cesz);
pg->lastspk = (double*)calloc(pg->cesz,sizeof(double)); // last spike time of each cell
// not column specific
CTYPi=HVAL("CTYPi"); STYPi=HVAL("STYPi"); dscrsz=HVAL("scrsz"); dscr=HPTR("scr");
// column specific
pg->ix = hoc_pgetarg(3);
pg->ixe = hoc_pgetarg(4);
if(verbose){printf("CTYPi=%d\n",CTYPi);
for(i=0;i<CTYPi;i++) printf("ix[%d]=%g, ixe[%d]=%g\n",i,pg->ix[i],i,pg->ixe[i]);}
pg->dvg = hoc_pgetarg(5); // div
pg->numc = hoc_pgetarg(6); // numc
pg->wmat = hoc_pgetarg(7); // wmat
pg->wd0 = hoc_pgetarg(8); // wd0
pg->delm = hoc_pgetarg(9); // delm
pg->deld = hoc_pgetarg(10); // deld
if (!pg->ce) {printf("INTF6 jitcondiv ERRA: ce not found\n"); hxe();}
if (ivoc_list_count(CTYP)!=CTYPi){
printf("INTF6 jitcondiv ERRB: %d %d\n",ivoc_list_count(CTYP),CTYPi); hxe(); }
for (i=0;i<pg->cesz;i++) { lop(pg->ce,i); qp->pg=pg; } // set all of the pg pointers for now
// make sure no seg error:
printf("Checking for possible seg error in double arrays: CTYPi==%d: ",CTYPi);
// can access arbitrary member dvg[a][b] using (&dvg[a*CTYPi])[b] or dvg+a*CTYPi+b
printf("%d %d %d ",DVG(CTYPi-1,CTYPi-1),(int)pg->ix[CTYPi-1],(int)pg->ixe[CTYPi-1]);
printf("%g %g ",WMAT(CTYPi-1,CTYPi-1,STYPi-1),WD0(CTYPi-1,CTYPi-1,STYPi-1));
printf("%g %g ",DELM(CTYPi-1,CTYPi-1),DELD(CTYPi-1,CTYPi-1));
printf("%d %g\n",dscrsz,dscr[dscrsz-1]); // scratch area for doubles
for (i=0,j=0;i<CTYPi;i++) if (ctt(i,&name)!=0) {
cty[j]=i; CNAME[j]=name; ctymap[i]=j;
j++;
if (j>=CTYPp) {printf("jitcondiv() INTERRA\n"); hxe();}
}
CTYN=j; // number of cell types being used
for (i=0;i<CTYN;i++) printf("%s(%d)=%g ",CNAME[i],cty[i],NUMC(cty[i]));
printf("\n%d cell types being used in col %d\n",CTYN,colid);
}
ENDVERBATIM
}
: intf.jitrec(vec,tvec)
PROCEDURE jitrec () {
VERBATIM {
int i;
ip=IDP; pg=ip->pg;
if(verbose>1) printf("jitrec from col %d, ip=%p, pg=%p\n",ip->col,ip,pg);
if (! ifarg(2)) { // clear with jitrec() or jitrec(0)
pg->jrmax=0; pg->jridv=0x0; pg->jrtvv=0x0;
return 0;
}
i = vector_arg_px(1, &pg->jrid); // could just set up the pointers once
pg->jrmax=vector_arg_px(2, &pg->jrtv);
pg->jridv=vector_arg(1); pg->jrtvv=vector_arg(2);
pg->jrmax=vector_buffer_size(pg->jridv);
if (pg->jrmax!=vector_buffer_size(pg->jrtvv)) {
printf("jitrec() ERRA: not same size: %d %d\n",i,pg->jrmax); pg->jrmax=0; hxe(); }
pg->jri=pg->jrj=0; // needs to be set at beginning of run
}
return 0;
ENDVERBATIM
}
: intf.scsv()
FUNCTION scsv () {
VERBATIM {
int ty=4; int i,j; unsigned int cnt=0;
ip=IDP; pg=ip->pg;
name = gargstr(1);
if ( !(wf1 = fopen(name,"w"))) { printf("Can't open %s\n",name); hxe(); }
fwrite(&pg->cesz,sizeof(int),1,wf1);
fwrite(&ty,sizeof(int),1,wf1);
for (i=0,j=0;i<pg->cesz;i++,j++) {
lop(pg->ce,i);
if (qp->spkcnt) {
dscr[j]=(double)(qp->spkcnt);
cnt++;
} else dscr[j]=0.0;
if (j>=dscrsz) {
fwrite(dscr,(size_t)sizeof(double),(size_t)dscrsz,wf1);
fflush(wf1);
j=0;
}
}
if (j>0) fwrite(dscr,(size_t)sizeof(double),(size_t)j,wf1);
fclose(wf1);
_lscsv=(double)cnt;
}
ENDVERBATIM
}
: intf.spkcnt(vec[,vec,flag])
: intf.spkcnt(min,max[,vec,flag]) flag=1 means reset all counts to 0
FUNCTION spkcnt () {
VERBATIM {
int nx, ny, i,j, ix, c, min, max, flag; unsigned int sum; double *y,*x;
ip=IDP; pg=ip->pg;
nx=ny=min=max=flag=0; i=1;
if (ifarg(i)) {
if (hoc_is_object_arg(i)) {
ny = vector_arg_px(i, &y); i++;
} else if (ifarg(i+1)) {
min=(int)*getarg(i); max=(int)*getarg(i+1); i+=2;
}
}
while (ifarg(i)) { // can pick up flag and vector in either order
if (hoc_is_object_arg(i)) { // output to a vector
nx = vector_arg_px(i, &x);
} else flag=(int)*getarg(i);
i++;
}
if (ny) max=ny; else if (max==0) max=pg->cesz; else max+=1; // enter max index wish to graph
if (nx && nx!=max-min) {
printf("INTF6 spkcnt() ERR: Vectors not same size %d %d\n",nx,max-min);hxe();}
for (i=min, sum=0;i<max;i++) {
if (ny) lop(pg->ce,(int)y[i]); else lop(pg->ce,i);
if (flag==2) sum+=(c=qp->blkcnt); else sum+=(c=qp->spkcnt);
if (nx) x[i]=(double)c;
if (flag==1) qp->spkcnt=qp->blkcnt=0;
}
_lspkcnt=(double)sum;
}
ENDVERBATIM
}
:** probejcd()
PROCEDURE probejcd () {
VERBATIM { int i,a[4];
ip=IDP; pg=ip->pg;
for (i=1;i<=3;i++) a[i]=(int)*getarg(i);
printf("CTYPi: %d, STYPi: %d, ",CTYPi,STYPi);
// printf("div: %d, ix: %d, ixe: %d, ",DVG(a[1],a[2]),(int)ix[a[1]],(int)ixe[a[1]]);
printf("wmat: %g, wd0: %g\n",WMAT(a[1],a[2],a[3]),WD0(a[1],a[2],a[3]));
}
ENDVERBATIM
}
:** randspk() sets next to next val in vector, this vector is handled globally
PROCEDURE randspk () {
VERBATIM
ip=IDP; pg=ip->pg;
if (ip->rvi > ip->rve) { // pointers go from rvi to rve inclusive
ip->input=0; // turn off
nxt=-1.;
} else if (t==0) { // initialization
nxt=pg->vsp[ip->rvi];
EXSY=pg->sysp[ip->rvi]; // synapse target for external input
WEX=pg->wsp[ip->rvi++]; // weight of external input
} else { // absolute times in vector -> interval
while ((nxt=pg->vsp[ip->rvi++]-t)<=1e-6) {
if (ip->rvi-1 > ip->rve) { printf("randspk() ERRA: "); chk(2.); hxe(); }
}
EXSY=pg->sysp[ip->rvi-1]; // rvi was incremented
WEX=pg->wsp[ip->rvi-1]; // rvi was incremented
}
ENDVERBATIM
: net_send(nxt,2) : can only be called from INITIAL or NET_RECEIVE blocks
}
:** vers gives version
PROCEDURE vers () {
printf("$Id: intf6.mod,v 1.58 2011/02/04 05:39:43 samn Exp $\n")
}
:** val(t,tstart) fills global vii[] to pass values back to record() (called from record())
VERBATIM
void val (double xx, double ta) {
vii[1]=VAM*EXP(-(xx - ta)/tauAM);
vii[2]=VNM*EXP(-(xx - ta)/tauNM);
vii[3]=VGA*EXP(-(xx - ta)/tauGA);
vii[5]=AHP*EXP(-(xx - ta)/tauahp);
vii[8]=VAM2*EXP(-(xx -ta)/tauAM2);
vii[9]=VNM2*EXP(-(xx - ta)/tauNM2);
vii[10]=VGA2*EXP(-(xx - ta)/tauGA2);
vii[6]=vii[1]+vii[2]+vii[3]+vii[4]+vii[5]+vii[8]+vii[9]+vii[10];
vii[7]=VTH + (VTHR-VTH)*EXP(-(xx-trrs)/tauRR);
}
ENDVERBATIM
:** valps(t,tstart) like val but builds voltages for pop spike
VERBATIM
void valps (double xx, double ta) {
vii[1]=VAM*EXP(-(xx - ta)/tauAM);
vii[2]=VNM*EXP(-(xx - ta)/tauNM);
vii[3]=VGA*EXP(-(xx - ta)/tauGA);
vii[8]=VAM2*EXP(-(xx - ta)/tauAM2);
vii[9]=VNM2*EXP(-(xx - ta)/tauNM2);
vii[10]=VGA2*EXP(-(xx - ta)/tauGA2);
vii[6]=vii[1]+vii[2]-vii[3]+vii[8]+vii[9]-vii[10];
}
ENDVERBATIM
:** record() stores values since last tg into appropriate vecs
PROCEDURE record () {
VERBATIM {
int i,j,k,nz; double ti;
vp = SOP;
if(!vp) {printf("**** record ERRA: vp=NULL!\n"); return 0;}
if (tg>=t) return 0;
if (ip->record==1) {
while ((int)vp->p >= (int)vp->size-(int)((t-tg)/vdt)-10) {
vp->size*=2;
for (k=0;k<NSV;k++) if (vp->vv[k]!=0x0) vp->vvo[k]=vector_newsize(vp->vv[k], vp->size);
// printf("**** WARNING expanding recording room to %d (type%d id%d at %g)****\n",vp->size,IDP->type,IDP->id,t);
}
} else if ((int)vp->p > (int)vp->size-(int)((t-tg)/vdt)) { // shift if record==2
nz=(int)((t-tg)/vdt);
for (k=0;k<NSV;k++) if (vp->vv[k]!=0x0) {
if (nz>vp->size) {pid(); printf("Record WARNING: vec too short: %d %d\n",nz,vp->size);
vp->p=0;
} else {
for (i=nz,j=0; i<vp->size; i++,j++) vp->vvo[k][j]=vp->vvo[k][i];
vp->p=vp->size-nz;
}
}
}
for (ti=tg;ti<=t && vp->p < vp->size;ti+=vdt,vp->p++) {
val(ti,tg);
if (vp->vvo[0]!=0x0) vp->vvo[0][vp->p]=ti;
for (k=1;k<NSV-1;k++) if (vp->vvo[k]!=0x0) { // not nil pointer
vp->vvo[k][vp->p]=vii[k]+RMP;
}
for (;k<NSV;k++) if (vp->vvo[k]!=0x0) { // not nil pointer
vp->vvo[k][vp->p]=vii[k];
}
}
tg=t;
}
ENDVERBATIM
}
:** recspk() records a spike by writing a 10 into the main VM vector
PROCEDURE recspk (x) {
VERBATIM { int k;
vp = SOP;
record();
if (vp->p > vp->size || vp->vvo[6]==0) return 0;
if (vp->vvo[0]!=0x0) vp->vvo[0][vp->p-1]=_lx;
vp->vvo[6][vp->p-1]=spkht; // the spike
tg=_lx;
}
ENDVERBATIM
}
:** recclr() clear the vectors pointers
PROCEDURE recclr () {
VERBATIM
{int k;
if (IDP->record) {
if (SOP!=nil) {
vp = SOP;
vp->size=0; vp->p=0;
for (k=0;k<NSV;k++) { vp->vv[k]=nil; vp->vvo[k]=nil; }
} else printf("INTF6 recclr ERR: nil pointer\n");
}
IDP->record=0;
}
ENDVERBATIM
}
:** recfree() free the vpt pointer memory
PROCEDURE recfree () {
VERBATIM
if (SOP!=nil) {
free(SOP);
SOP=nil;
} else printf("INTF6 recfree ERR: nil pointer\n");
IDP->record=0;
ENDVERBATIM
}
:** initvspks() sets up vector from which to read random spike times
: this is a global procedure to set up pieces of a global vector
: all cells share one vector but read from different locations
: (CHANGED from intervals and global proc in v224)
: intf.initvspks(indices, times , weights, synapse types)
PROCEDURE initvspks () {
VERBATIM
{int max, i,err;
double last,lstt;
ip=IDP; pg=ip->pg;
if (! ifarg(1)) {printf("Return initvspks(ivspks,vspks,wvspks)\n"); return 0.;}
if(verbose>1) printf("initvspks: col=%d, ip=%p, pg=%p, pg->isp=%p\n",ip->col,ip,pg,pg->isp);
if (pg->isp!=NULL) clrvspks();
ip=IDP; pg=ip->pg; err=0;
i = vector_arg_px(1, &pg->isp); // could just set up the pointers once
max=vector_arg_px(2, &pg->vsp);
if (max!=i) {err=1; printf("initvspks ERR: vecs of different size\n");}
if (max==0) {err=1; printf("initvspks ERR: vec not initialized\n");}
max=vector_arg_px(3, &pg->wsp);
if (max!=i) {err=1; printf("initvspks ERR: 3rd vec is of different size\n");}
max=vector_arg_px(4, &pg->sysp);
if (max!=i) {err=1; printf("initvspks ERR: 4th vec is of different size\n");}
pg->vspn=max;
if (!pg->ce) {printf("Need global ce for initvspks() since intf.mod501\n"); hxe();}
for (i=0,last=-1; i<max; ) { // move forward to first
if (pg->isp[i]!=last) { // new one
lop(pg->ce,(unsigned int)pg->isp[i]);
qp->rvb=qp->rvi=i;
qp->vinflg=1;
last=pg->isp[i];
lstt=pg->vsp[i];
i++;
}
for (; i<max && pg->isp[i] == last; i++) { // move forward to last
if (pg->vsp[i]<=lstt) { err=1;
printf("initvspks ERR: nonmonotonic for cell#%d: %g %g\n",qp->id,lstt,pg->vsp[i]); }
lstt=pg->vsp[i];
}
qp->rve=i-1;
if (subsvint>0) {
pg->vsp[qp->rve] = pg->vsp[qp->rvb]+subsvint;
pg->wsp[qp->rve] = pg->wsp[qp->rvb];
}
if (err) { qp->rve=0; hxe(); }
}
}
ENDVERBATIM
}
:** shock() reads random spike times from save db as initvspks() but just sends a single shock
: to each listed cell
: this is a global procedure that calls multiple cells
PROCEDURE shock () {
VERBATIM
{int max, i,err;
double last, lstt, *isp, *vsp, *wsp;
if (! ifarg(1)) {printf("Return shock(ivspks,vspks,wvspks)\n"); return 0.;}
ip=IDP; pg=ip->pg; err=0;
i = vector_arg_px(1, &isp); // could just set up the pointers once
max=vector_arg_px(2, &vsp);
if (max!=i) {err=1; printf("shock ERR: vecs of different size\n");}
if (max==0) {err=1; printf("shock ERR: vec not initialized\n");}
max=vector_arg_px(3, &wsp);
if (max!=i) {err=1; printf("shock ERR: 3rd vec is of different size\n");}
pg->vspn=max;
if (!pg->ce) {printf("Need global ce for shock()\n"); hxe();}
for (i=0,last=-1; i<max; ) { // move forward to first
if (isp[i]!=last) { // skip any redund indices
lop(pg->ce,(unsigned int)isp[i]);
WEX=-1e9; // code for shock
EXSY=AM; // set to AMPA, though doesn't matter for single shock
#if defined(t)
net_send((void**)0x0, wts,pmt,t+vsp[i],2.0); // 2 is randspk flag
#else
net_send((void**)0x0, wts,pmt,vsp[i],2.0); // 2 is randspk flag
#endif
i++;
}
}
}
ENDVERBATIM
}
PROCEDURE clrvspks () {
VERBATIM {
unsigned int i;
ip=IDP; pg=ip->pg;
if(verbose>1) printf("clrvspks: col=%d, ip=%p, pg=%p, pg->isp=%p\n",ip->col,ip,pg,pg->isp);
for (i=0; i<pg->cesz; i++) {
lop(pg->ce,i);
qp->vinflg=0;
}
}
ENDVERBATIM
}
: trvsp gets called globally to go through the vector
: first pass (arg 1) it replaces terminal values with 1e9
: second pass (arg 2) it replaces terminal values with first+subsvint
PROCEDURE trvsp ()
{
VERBATIM
int i, flag;
double ind, local_t0;
ip=IDP; pg=ip->pg;
flag=(int) *getarg(1);
if (subsvint==0.) {printf("trvsp"); return(0.);}
ind = pg->isp[0];
local_t0 = pg->vsp[0];
if (flag==1) {
for (i=0; i<pg->vspn; i++) {
if (pg->isp[i]!=ind) {
pg->vsp[i-1]=1.e9;
ind=pg->isp[i];
}
}
pg->vsp[pg->vspn-1]=1.e9;
} else if (flag==2) {
for (i=0; i<pg->vspn; i++) {
if (pg->isp[i]!=ind) {
pg->vsp[i-1] = local_t0 + subsvint;
ind=pg->isp[i];
local_t0 = pg->vsp[i];
}
}
pg->vsp[pg->vspn-1] = local_t0 + subsvint;
} else {printf("trvsp flag %d not recognized\n",flag); hxe();}
ENDVERBATIM
}
:** initjttr() sets up vector from which to read jitter
: -- key jtt to avoid confusion with jitcon=='just in time connection'
: this is a global not a range procedure -- just call once
PROCEDURE initjttr () {
VERBATIM
{int max, i, err=0;
ip=IDP; pg=ip->pg;
pg->jtpt=0;
if (! ifarg(1)) {printf("Return initjttr(vec)\n"); return(0.);}
max=vector_arg_px(1, &jsp);
if (max==0) {err=1; printf("initjttr ERR: vec not initialized\n");}
for (i=0; i<max; i++) if (jsp[i]<=0) {err=1;
printf("initjttr ERR: vec should be >0: %g\n",jsp[i]);}
if (err) { jsp=nil; pg->jtmax=0.; return(0.); }// hoc_execerror("",0);
if (max != pg->jtmax) {
printf("WARNING: resetting jtmax_INTF6 to %d\n",max); pg->jtmax=max; }
}
ENDVERBATIM
}
:* internal routines
VERBATIM
//** getlp(LIST,ITEM#) sets qp: take object from ob list @ index i and return pointer
// modeled on vector_arg_px(): picks up obj from list and resolves pointers
id0* getlp (Object *ob, unsigned int i) {
Object *lb; id0* myp;
lb = ivoc_list_item(ob, i);
if (! lb) { printf("INTF6:getlp %d exceeds %d for list ce\n",i,pg->cesz); hxe();}
pmt=ob2pntproc(lb);
myp = id0ptr(pmt->_prop); // #define sop *_ppvar[2].pval
return myp;
}
//** lop(LIST,ITEM#) sets qp: take object from ob list @ index i and assign pointer to GLOBAL qp pointer
// modeled on vector_arg_px(): picks up obj from list and resolves pointers
static void lop (Object *ob, unsigned int i) {
Object *lb;
lb = ivoc_list_item(ob, i);
if (! lb) { printf("INTF6:lop %d exceeds %d for list ce\n",i,pg->cesz); hxe();}
pmt=ob2pntproc(lb);
qp = id0ptr(pmt->_prop); // #define sop *_ppvar[2].pval
}
// use stoppo() as a convenient conditional breakpoint in gdb (gdb watching is too slow)
void stoppo () {
}
//** ctt(ITEM#) find cells that exist by name
static int ctt (unsigned int i, char** name) {
Object *lb;
if (NUMC(i)==0) return 0; // none of this cell type
lb = ivoc_list_item(CTYP, i);
if (! lb) { printf("INTF6:ctt %d exceeds %d for list CTYP\n",i,CTYPi); hxe();}
{*name=*(lb->u.dataspace->ppstr);}
return (int)NUMC(i);
}
ENDVERBATIM
PROCEDURE test () {
VERBATIM
char *str; int x;
x=ctt(7,&str);
printf("%s (%d)\n",str,x);
ENDVERBATIM
}
: lof can find object information
PROCEDURE lof () {
VERBATIM {
Object *ob; int num,i,ii,j,k,si,nx; double *vvo[7], *par; IvocVect *vv[7];
ob = *(hoc_objgetarg(1));
si=(int)*getarg(2);
num = ivoc_list_count(ob);
if (num!=7) { printf("INTF6 lof ERR %d>7\n",num); hxe(); }
for (i=0;i<num;i++) {
j = list_vector_px3(ob, i, &vvo[i], &vv[i]);
if (i==0) nx=j;
if (j!=nx) { printf("INTF6 lof ERR %d %d\n",j,nx); hxe(); }
}
// for (i=ix[si],ii=0;i<=ixe[si] && ii<nx;i++,ii++) {
// vvo[0][ii]=(double)i;
// par=lop(ce,i);
// for (j=20,k=1;j<25;j++,k++) { // NB these could move: Vm,VAM,VNM,VGA
// vvo[k][ii]=par[j];
// }
// }
}
ENDVERBATIM
}
:* initinvl() sets up vector from which to read intervals
: this is a global not a range procedure -- just call once
PROCEDURE initinvl () {
printf("initinvl() NOT BEING USED\n")
}
: invlflag() used internally; can't set from here; use initinvl() and range invlset()
FUNCTION invlflag () {
VERBATIM
ip=IDP; pg=ip->pg;
if (ip->invl0==1 && invlp==nil) { // err
printf("INTF6 invlflag ERR: pointer not initialized\n"); hoc_execerror("",0);
}
_linvlflag= (double)ip->invl0;
ENDVERBATIM
}
:** shift() returns the appropriate shift
FUNCTION shift (vl) {
VERBATIM
double expand, tmp, min, max;
//if (invlp==nil) {printf("INTF6 invlflag ERRa: pointer not initialized\n"); hoc_execerror("",0);}
if ((t<(invlt-invl)+invl/2) && invlt != -1) { // don't shift if less than halfway through
_lshift=0.; // flag for no shift
} else {
expand = -(_lvl-(-65))/20; // expand positive if hyperpolarized
if (expand>1.) expand=1.; if (expand<-1.) expand=-1.;
if (expand>0.) { // expand interval
max=1.5*invl;
tmp=oinvl+0.8*expand*(max-oinvl); // the amount we can add to the invl
} else {
min=0.5*invl;
tmp=oinvl+0.8*expand*(oinvl-min); // the amount we can reduce current invl
}
if (invlt+tmp<t+2) { // getting too near spike time
_lshift=0.;
} else {
oinvl=tmp; // new interval
_lshift=invlt+oinvl;
}
}
ENDVERBATIM
}
:* recini() called from INITIAL block to set vp->p to zero and open up vectors
PROCEDURE recini () {
VERBATIM
{ int k;
if (SOP==nil) {
printf("INTF6 record ERR: pointer not initialized\n"); hoc_execerror("",0);
} else {
vp = SOP;
vp->p=0;
// open up the vector maximally before writing into it; will correct size in fini
for (k=0;k<NSV;k++) if (vp->vvo[k]!=0) vector_resize(vp->vv[k], vp->size);
}}
ENDVERBATIM
}
:** fini() to finish up recording -- should be called from FinishMisc()
PROCEDURE fini () {
VERBATIM
{int k;
// initialization for next round, this will not be set if job terminates prematurely
IDP->rvi=IDP->rvb; // -- see vinset()
if (IDP->wrec) { wrecord(1e9); }
if (IDP->record) {
record(); // finish up
for (k=0;k<NSV;k++) if (vp->vvo[k]!=0) { // not nil pointer
vector_resize(vp->vv[k], vp->p);
}
}}
ENDVERBATIM
}
:** chk([flag]) with flag=1 prints out info on the record structure
: flag=2 prints out info on the global vectors
PROCEDURE chk (f) {
VERBATIM
{int i,lfg;
lfg=(int)_lf;
ip=IDP; pg=ip->pg;
printf("ID:%d; typ: %d; rec:%d wrec:%d inp:%d jtt:%d invl:%d\n",ip->id,ip->type,ip->record,ip->wrec,ip->input,ip->jttr,ip->invl0);
if (lfg==1) {
if (SOP!=nil) {
vp = SOP;
printf("p %d size %d tg %g\n",vp->p,vp->size,tg);
for (i=0;i<NSV;i++) if (vp->vv[i]) printf("%d %p %p;",i,vp->vv[i],vp->vvo[i]);
} else printf("Recording pointers not initialized");
}
if (lfg==2) {
printf("Global vectors for input and jitter (jttr): \n");
if (pg->vsp!=nil) printf("VSP: %p (%d/%d-%d)\n",pg->vsp,ip->rvi,ip->rvb,ip->rve); else printf("no VSP\n");
if (jsp!=nil) printf("JSP: %p (%d/%d)\n",jsp,pg->jtpt,pg->jtmax); else printf("no JSP\n");
}
if (lfg==3) {
if (pg->vsp!=nil) { printf("VSP: (%d/%d-%d)\n",ip->rvi,ip->rvb,ip->rve);
for (i=ip->rvb;i<=ip->rve;i++) printf("%d:%g ",i,pg->vsp[i]);
printf("\n");
} else printf("no VSP\n");
}
if (lfg==4) { // was used to give invlp[],invlmax
}
if (lfg==5) {
printf("wwpt %d wwsz %d\n WW vecs: ",wwpt,wwsz);
printf("wwwid %g wwht %d nsw %g\n WW vecs: ",wwwid,(int)wwht,nsw);
for (i=0;i<NSW;i++) printf("%d %p %p;",i,ww[i],wwo[i]);
}}
ENDVERBATIM
}
:** id() and pid() identify the cell -- printf and function return
FUNCTION pid () {
VERBATIM
printf("INTF6%d(%d/%d@%g) ",IDP->id,IDP->type,IDP->col,t);
_lpid = (double)IDP->id;
ENDVERBATIM
}
: intra-column identifier for cell
FUNCTION id () {
VERBATIM
if (ifarg(1)) IDP->id = (unsigned int) *getarg(1);
_lid = (double)IDP->id;
ENDVERBATIM
}
FUNCTION type () {
VERBATIM
if (ifarg(1)) IDP->type = (unsigned char) *getarg(1);
_ltype = (double)IDP->type;
ENDVERBATIM
}
: column identifier for cell
FUNCTION col () {
VERBATIM
ip = IDP;
if (ifarg(1)) ip->col = (unsigned int) *getarg(1);
_lcol = (double)ip->col;
ENDVERBATIM
}
: global identifier for cell
FUNCTION gid () {
VERBATIM
ip = IDP;
if (ifarg(1)) ip->gid = (unsigned int) *getarg(1);
_lgid = (double)ip->gid;
ENDVERBATIM
}
FUNCTION dbx () {
VERBATIM
ip = IDP;
if (ifarg(1)) ip->dbx = (unsigned char) *getarg(1);
_ldbx = (double)ip->dbx;
ENDVERBATIM
}
:** initrec(name,vec) sets up recording of name (see varnum for list) into a vector
PROCEDURE initrec () {
VERBATIM
{int i;
name = gargstr(1);
if (SOP==nil) {
IDP->record=1;
SOP = (vpt*)ecalloc(1, sizeof(vpt));
SOP->size=0;
}
if (IDP->record==0) {
recini();
IDP->record=1;
}
vp = SOP;
i=(int)varnum();
if (i==-1) {printf("INTF6 record ERR %s not recognized\n",name); hoc_execerror("",0); }
vp->vv[i]=vector_arg(2);
vector_arg_px(2, &(vp->vvo[i]));
if (vp->size==0) { vp->size=(unsigned int)vector_buffer_size(vp->vv[i]);
} else if (vp->size != (unsigned int)vector_buffer_size(vp->vv[i])) {
printf("INTF6 initrec ERR vectors not all same size: %d vs %d",vp->size,vector_buffer_size(vp->vv[i]));
hoc_execerror("", 0);
}}
ENDVERBATIM
}
:** varnum(statevar_name) returns index number associated with particular variable name
: called by initrec() using global name
FUNCTION varnum () { LOCAL i
i=-1
VERBATIM
if (strcmp(name,"time")==0) { _li=0.;
} else if (strcmp(name,"VAM")==0) { _li=1.;
} else if (strcmp(name,"VNM")==0) { _li=2.;
} else if (strcmp(name,"VGA")==0) { _li=3.;
} else if (strcmp(name,"AHP")==0) { _li=5.;
} else if (strcmp(name,"V")==0) { _li=6.;
} else if (strcmp(name,"VM")==0) { _li=6.; // 2 names for V
} else if (strcmp(name,"VTHC")==0) { _li=7.;
} else if (strcmp(name,"VAM2")==0) { _li=8.;
} else if (strcmp(name,"VNM2")==0) { _li=9.;
} else if (strcmp(name,"VGA2")==0) { _li=10.;
}
ENDVERBATIM
varnum=i
}
:** vecname(INDEX) prints name when given an index
PROCEDURE vecname () {
VERBATIM
int i;
i = (int)*getarg(1);
if (i==0) printf("time\n");
else if (i==1) printf("VAM\n");
else if (i==2) printf("VNM\n");
else if (i==3) printf("VGA\n");
else if (i==5) printf("AHP\n");
else if (i==6) printf("V\n");
else if (i==7) printf("VTHC\n");
else if (i==8) printf("VAM2\n");
else if (i==9) printf("VNM2\n");
else if (i==10) printf("VGA2\n");
ENDVERBATIM
}
:** initwrec(name,vec) sets up recording of sim field potential
PROCEDURE initwrec () {
VERBATIM
{int i, k, num, cap; Object* ob;
ob = *hoc_objgetarg(1); // list of vectors
num = ivoc_list_count(ob);
if (num>NSW) { printf("INTF6 initwrec() WARN: can only store %d ww vecs\n",NSW); hxe();}
nsw=(double)num;
for (k=0;k<num;k++) {
cap = list_vector_px2(ob, k, &wwo[k], &ww[k]);
if (k==0) wwsz=cap; else if (wwsz!=cap) {
printf("INTF6 initwrec ERR w-vecs size err: %d,%d,%d",k,wwsz,cap); hxe(); }
}
}
ENDVERBATIM
}
: popspk() is paste on gaussian for a pop spk: with vdt=0.1 -20 to 20 is 4 ms
: needs to be above location where is actively accessed
PROCEDURE popspk (x) {
TABLE Psk DEPEND wwwid,wwht FROM -40 TO 40 WITH 81
Psk = -wwht*exp(-2.*x*x/wwwid/wwwid)
}
PROCEDURE pskshowtable () {
VERBATIM
int j;
printf("_tmin_popspk:%g -_tmin_popspk:%g\n",_tmin_popspk,-_tmin_popspk);
for (j=0;j<=-2*(int)_tmin_popspk+1;j++) printf("%g ",_t_Psk[j]);
printf("\n");
ENDVERBATIM
}
:** wrecord() records voltages onto single global vector
PROCEDURE wrecord (te) {
VERBATIM
{int i,j,k,max,wrp; double ti,scale;
for (i=0;i<WRNUM && (wrp=(int)IDP->wreci[i])>-1;i++) {
// wrp: index for multiple field recordings
scale=(double)IDP->wscale[i];
if (_lte<1.e9) { // a spike recording
if (scale>0) {
max=-(int)_tmin_popspk; // max of table max=-min
k=(int)floor((_lte-rebeg)/vdt+0.5);
for (j= -max;j<=max && k+j>0 && k+j<wwsz;j++) {
wwo[wrp][k+j] += scale*_t_Psk[j+max]; // direct copy from the Psk table
}
}
} else if (twg>=t) { return 0;
} else {
for (ti=twg,k=(int)floor((twg-rebeg)/vdt+0.5);ti<=t && k<wwsz;ti+=vdt,k++) {
valps(ti,twg); // valps() for pop spike calculation
wwo[wrp][k]+=vii[6]*lfpscale;
if (IDP->dbx==-1) printf("%g:%g ",vii[6],wwo[wrp][k]);
}
}
}
if (_lte==1.e9) twg=ti;
}
return 0;
ENDVERBATIM
}
: backward compatibility -- note that index was 1-offset; convert to 0 offset here
: wrec() -- return value in wrec0
: wrec(VAL) -- set wrec0
: wrec(VAL,SCALE) -- set wrecIND and scaling for wrecIND
FUNCTION wrec () {
VERBATIM
{ int k,ix;
ip=IDP;
if (ifarg(1)) {
ix=(int)*getarg(1);
if (ix>=1) {
if (ix-1>=nsw) {
printf("Attempt to save into ww[%d] but only have %d\n",ix-1,(int)nsw); hxe();}
ip->wrec=1;
ip->wreci[0]=(char)ix-1;
ip->wscale[0]=1.; // default
if (ifarg(2)) ip->wscale[0]= (float)*getarg(2);
} else if (ix<=0) {
ip->wrec=0;
for (k=0;k<WRNUM;k++) { ip->wreci[k]=-1; ip->wscale[k]=-1.0; }
} else {printf("INTF6 wrec ERR flag(0/1) %d\n",ip->wrec); hxe();
}
}
_lwrec=(double)ip->wrec;
}
ENDVERBATIM
}
: wrc() -- return value in wrec0
: wrc(VAL) -- set wrec0
: wrc(IND,SCALE) -- set wrec0 and scaling for wrec0
FUNCTION wrc () {
VERBATIM
{ int i,ix;
ip=IDP;
if (ifarg(1)) { // 1 or 2 args
ix=(int)*getarg(1);
if (ix<0) {
ip->wrec=0;
for (i=0;i<WRNUM;i++) { ip->wreci[i]=-1; ip->wscale[i]=-1.0; }
} else {
for (i=0;i<WRNUM && ip->wreci[i]!=-1 && ip->wreci[i]!=ix;i++) {};
if (i==WRNUM) {
pid(); printf("INFT wrc() ERR: out of wreci pointers (max %d)\n",WRNUM); hxe();}
if (ix>=nsw) {printf("Attempt to save into ww[%d] but only have %d\n",ix,(int)nsw); hxe();}
ip->wrec=1;
ip->wreci[i]=ix;
if (ifarg(2)) ip->wscale[i]=(float)*getarg(2); else ip->wscale[i]=1.0;
}
} else {
for (i=0;i<WRNUM;i++) printf("%d:%g ",ip->wreci[i],ip->wscale[i]);
printf("\n");
}
_lwrc=(double)ip->wrec;
}
ENDVERBATIM
}
FUNCTION wwszset () {
VERBATIM
if (ifarg(1)) wwsz = (unsigned int) *getarg(1);
_lwwszset=(double)wwsz;
ENDVERBATIM
}
:** wwfree()
FUNCTION wwfree () {
VERBATIM
int k;
IDP->wrec=0;
wwsz=0; wwpt=0; nsw=0.;
for (k=0;k<NSW;k++) { ww[k]=nil; wwo[k]=nil; }
ENDVERBATIM
}
:** jttr() reads out of a noise vector (call from NET_RECEIVE block)
FUNCTION jttr () {
VERBATIM
ip=IDP; pg=ip->pg;
if (pg->jtmax>0 && pg->jtpt>=pg->jtmax) {
pg->jtpt=0;
printf("Warning, cycling through jttr vector at t=%g\n",t);
}
if (pg->jtmax>0) _ljttr = jsp[pg->jtpt++]; else _ljttr=0;
ENDVERBATIM
}
:** global_init() initialize globals shared by all INTF6s
PROCEDURE global_init () {
popspk(0) : recreate table if any change in wid or ht
VERBATIM
{ int i,j,k,c; double stt[3];
if (nsw>0. && wwo[0]!=0) { // do just once
printf("Initializing ww to record for %g (%g)\n",vdt*wwsz,vdt);
wwpt=0;
for (k=0;k<(int)nsw;k++) {
vector_resize(ww[k], wwsz);
for (j=0;j<wwsz;j++) wwo[k][j]=0.;
}
}
errflag=0;
for (i=0;i<CTYN;i++) blockcnt[cty[i]]=spikes[cty[i]]=0;
for(c=0;c<inumcols;c++) {
pg=ppg[c]; if(!pg) continue;
if (pg->jridv) { pg->jri=pg->jrj=0; vector_resize(pg->jridv, pg->jrmax); vector_resize(pg->jrtvv, pg->jrmax); }
pg->spktot=0;
pg->jtpt=0;
pg->eventtot=0;
}
}
ENDVERBATIM
}
PROCEDURE global_fini () {
VERBATIM
int c,k;
for (k=0;k<(int)nsw;k++) vector_resize(ww[k], (int)floor(t/vdt+0.5));
for(c=0;c<inumcols;c++) {
pg=ppg[c]; if(!pg) continue;
if (pg->jridv && pg->jrj<pg->jrmax) {
vector_resize(pg->jridv, pg->jrj);
vector_resize(pg->jrtvv, pg->jrj);
}
}
ENDVERBATIM
}
:* setting and getting flags: fflag, record,input,jttr
FUNCTION fflag () { fflag=1 }
FUNCTION thrh () { thrh=VTH-RMP }
: reflag() used internally; can't set from here; use recinit()
FUNCTION recflag () {
VERBATIM
_lrecflag= (double)IDP->record;
ENDVERBATIM
}
: vinflag() used internally; can't set from here; use global initvspks() and range vinset()
FUNCTION vinflag () {
VERBATIM
ip=IDP; pg=ip->pg;
if (ip->vinflg==0 && pg->vsp==nil) { // do nothing
} else if (ip->vinflg==1 && ip->rve==-1) {
printf("INTF6 vinflag ERR: pointer not initialized\n"); hoc_execerror("",0);
} else if (ip->rve >= 0) {
if (pg->vsp==nil) {
printf("INTF6 vinflag ERR1: pointer not initialized\n"); hoc_execerror("",0);
}
ip->rvi=ip->rvb;
ip->input=1;
}
_lvinflag= (double)ip->vinflg;
ENDVERBATIM
}
:** flag(name,[val,setall]) set or get a flag
: flag(name,vec) fill vec with flag value from all the cells
: seek names from iflags[] and look at location &ip->type -- beginning of flags
FUNCTION flag () {
VERBATIM
char *sf; static int ix,fi,setfl,nx; static unsigned char val; static double *x, delt;
ip=IDP; pg=ip->pg;
if (FLAG==OK) { // callback -- DO NOT SET FROM HOC
FLAG=0.;
if (stoprun) {slowset=0; return 0.0;}
if (IDP->dbx==-1)printf("slowset fi:%d ix:%d ss:%g delt:%g t:%g\n",fi,ix,slowset,delt,t);
if (t>slowset || ix>=pg->cesz) { // done
printf("Slow-setting of flag %d finished at %g: (%d,%g,%g)\n",fi,t,ix,delt,slowset);
slowset=0.; return 0.0;
}
if (ix<pg->cesz) {
lop(pg->ce,ix);
(&qp->type)[fi]=((fi>=iflneg)?(char)x[ix]:(unsigned char)x[ix]);
ix++;
#if defined(t)
net_send((void**)0x0, wts,tpnt,t+delt,OK); // OK is flag() flag
#else
net_send((void**)0x0, wts,tpnt,delt,OK);
#endif
}
return 0.0;
}
if (slowset>0 && ifarg(3)) {
printf("INTF6 flag() slowset ERR; attempted set during slowset: fi:%d ix:%d ss:%g delt:%g t:%g",\
fi,ix,slowset,delt,t);
return 0.0;
}
ip = IDP; setfl=ifarg(3);
if (ifarg(4)) { slowset=*getarg(4); delt=slowset/pg->cesz; slowset+=t; }
sf = gargstr(1);
for (fi=0;fi<iflnum && strncmp(sf, &iflags[fi*4], 3)!=0;fi++) ; // find flag by name
if (fi==iflnum) {printf("INTF6 ERR: %s not found as a flag (%s)\n",sf,iflags); hxe();}
if (ifarg(2)) {
if (hoc_is_double_arg(2)) { // either set to all or just to this one
val=(unsigned char)*getarg(2);
if (slowset) { // set one and come back
printf("NOT IMPLEMENTED\n"); // ****NOT IMPLEMENTED****
} else if (setfl) { // set them all
for (ix=0;ix<pg->cesz;ix++) { lop(pg->ce,ix); (&qp->type)[fi]=val; }
} else { // just set this one
(&ip->type)[fi]=((fi>=iflneg)?(char)val:val);
}
} else {
nx=vector_arg_px(2,&x);
if (nx!=pg->cesz) {
if (setfl) { printf("INTF6 flag ERR: vec sz mismatch: %d %d\n",nx,pg->cesz); hxe();
} else x=vector_newsize(vector_arg(2),pg->cesz);
}
if (setfl && slowset) { // set one and come back
ix=0;
lop(pg->ce,ix);
(&qp->type)[fi]=((fi>=iflneg)?(char)x[ix]:(unsigned char)x[ix]);
ix++;
#if defined(t)
net_send((void**)0x0, wts,tpnt,t+delt,OK); // OK is flag() flag
#else
net_send((void**)0x0, wts,tpnt,delt,OK);
#endif
} else for (ix=0;ix<pg->cesz;ix++) {
lop(pg->ce,ix);
if (setfl) { (&qp->type)[fi]=((fi>=iflneg)?(char)x[ix]:(unsigned char)x[ix]);
} else {
x[ix]=(double)((fi>=iflneg)?(char)(&qp->type)[fi]:(unsigned char)(&qp->type)[fi]);
}
}
}
}
_lflag=(double)((fi>=iflneg)?(char)(&ip->type)[fi]:(unsigned char)(&ip->type)[fi]);
ENDVERBATIM
}
FUNCTION allspck () {
VERBATIM
int i; double *x, sum; IvocVect *voi;
ip = IDP; pg=ip->pg;
voi=vector_arg(1); x=vector_newsize(voi,pg->cesz);
for (i=0,sum=0;i<pg->cesz;i++) { lop(pg->ce,i);
x[i]=spck;
sum+=spck;
}
_lallspck=sum;
ENDVERBATIM
}
:** resetall()
PROCEDURE resetall () {
VERBATIM
int ii,i; unsigned char val;
ip=IDP; pg=ip->pg;
if(verbose>1) printf("resetall: ip=%p, col=%d, pg=%p\n",ip,pg->col,pg);
for (i=0;i<pg->cesz;i++) {
lop(pg->ce,i);
Vm=RMP; VAM=0; VNM=0; VGA=0; AHP=0; invlt=-1; VAM2=0; VNM2=0; VGA2=0;
t0=t; trrs=t; twg = t; cbur=0; spck=0; refractory=0; VTHC=VTHR=VTH;
}
ENDVERBATIM
}
:** floc(x,y[,z]) // find a cell by location
FUNCTION floc () {
VERBATIM
double x,y,z,r,min,rad, *ix; int ii,i,n,cnt; IvocVect* voi;
cnt=0; n=1000; r=-1;
ip = IDP; pg=ip->pg;
x = *getarg(1);
y = *getarg(2);
z= ifarg(3)?(*getarg(3)):1e9;
if (ifarg(5)) {
r= *getarg(4);
voi=vector_arg(5);
ix=vector_newsize(voi,n);
}
for (i=0,min=1e9,ii=-1;i<pg->cesz;i++) {
lop(pg->ce,i);
rad=(x-xloc)*(x-xloc)+(y-yloc)*(y-yloc)+(z==1e9?0.:((z-zloc)*(z-zloc))); // rad^2
if (r>0 && rad<r*r) {
if (cnt>=n) ix=vector_newsize(voi,n*=2);
ix[cnt]=(double)i;
cnt++;
}
if (rad<min) { min=rad; ii=i; }
}
if (r>0) ix=vector_newsize(voi,cnt);
_lfloc=(double)ii;
ENDVERBATIM
}
:** invlset([val]) set or get the invl flag
FUNCTION invlset () {
VERBATIM
ip=IDP;
if (ifarg(1)) ip->invl0 = (unsigned char) *getarg(1);
_linvlset=(double)ip->invl0;
ENDVERBATIM
}
:** vinset([val]) set or get the input flag (for using shared input from a vector)
FUNCTION vinset () {
VERBATIM
ip=IDP;
if (ifarg(1)) ip->vinflg = (unsigned char) *getarg(1);
if (ip->vinflg==1) {
ip->input=1;
ip->rvi = ip->rvb;
}
_lvinset=(double)ip->vinflg;
ENDVERBATIM
}
:* TABLES
PROCEDURE EXPo (x) {
TABLE RES FROM -20 TO 0 WITH 5000
RES = exp(x)
}
FUNCTION EXP (x) {
EXPo(x)
EXP = RES
}
PROCEDURE ESINo (x) {
TABLE ESIN FROM 0 TO 2*PI WITH 3000 : one cycle
ESIN = sin(x)
}
FUNCTION rates (vv) {
: from Stevens & Jahr 1990a,b
rates = maxnmc / (1 + exp(0.062 (/mV) * -vv) * ( (mg / mg0) ) )
}