# packages of various functions.
from copy import copy
from math import *
def distance(p, q):
x = p[0] - q[0]
y = p[1] - q[1]
z = p[2] - q[2]
return sqrt(x ** 2 + y ** 2 + z ** 2)
class Spherical:
@staticmethod
def to(p, center=[0,0,0]):
rho = distance(p, center)
p = copy(p); p[0] -= center[0]; p[1] -= center[1]; p[2] -= center[2]
phi = atan2(p[1], p[0])
try:
theta = acos(p[2] / rho)
except ZeroDivisionError:
theta = acos(p[2] / 1e-8)
return rho, phi, theta
@staticmethod
def xyz(rho, phi, theta, center=[0,0,0]):
x = rho * cos(phi) * sin(theta) + center[0]
y = rho * sin(phi) * sin(theta) + center[1]
z = rho * cos(theta) + center[2]
return [ x, y, z ]
def centroid(pts):
x = 0.
y = 0.
z = 0.
for p in pts:
x += p[0]
y += p[1]
z += p[2]
x /= len(pts)
y /= len(pts)
z /= len(pts)
return [ x, y, z ]
# for elliptical coords
class Ellipsoid:
def __init__(self, pos, axis):
self.__pos = copy(pos)
halfAxis = copy(axis)
for i in range(3): halfAxis[i] /= 2.
self.__inverse = halfAxis[0] < halfAxis[1]
self.__halfAxis = halfAxis
# eccentricity
a = 0; b = 1;
if halfAxis[a] < halfAxis[b]: b = 0; a = 1
self.__eccen = sqrt(halfAxis[a] ** 2 - halfAxis[b] ** 2) / halfAxis[a]
def intersect(self, p, u):
A = 0.
B = 0.
C = -1
v = []
for i in range(3):
A += (u[i]/self.__halfAxis[i])** 2
B += 2*u[i]*(p[i]-self.__pos[i]) / (self.__halfAxis[i]**2)
C += ((p[i]-self.__pos[i])/self.__halfAxis[i])**2
delta = B ** 2 - 4 * A * C
t0 = (-B+sqrt(delta)) / (2*A)
t1 = (-B-sqrt(delta)) / (2*A)
if abs(t0) < abs(t1):
t = t0
else:
t = t1
q = []
for i in range(3):
q.append(p[i] + t * u[i])
return q
def project(self, pos):
return self.intersect(pos, versor(pos, self.__pos))
def R(self, phi): return self.__halfAxis[0] / sqrt(1 - (self.__eccen * sin(phi)) ** 2)
# from elliptical to cartesian
def toXYZ(self, h, lamb, phi):
N = self.R(phi)
XYProj = (N + h) * cos(phi)
p = [ XYProj * cos(lamb),
XYProj * sin(lamb),
((1 - self.__eccen ** 2) * N + h) * sin(phi) ]
if self.__inverse: aux = p[0]; p[0] = p[1]; p[1] = aux
for i in range(3): p[i] += self.__pos[i]
return p
# from cartesian to elliptical
def toElliptical(self, pt):
x = pt[0] - self.__pos[0]
y = pt[1] - self.__pos[1]
z = pt[2] - self.__pos[2]
if self.__inverse: aux = y; y = x; x = aux
lamb = atan2(y, x)
p = sqrt(x ** 2 + y ** 2)
try:
phi = atan(z / ((1 - self.__eccen ** 2) * p))
except ZeroDivisionError:
phi = atan(z / 1e-8)
MAXIT = int(1e+4)
for i in range(MAXIT):
phi1 = phi
N = self.R(phi)
h = p / cos(phi) - N
try:
phi = atan(z / ((1 - self.__eccen ** 2 * N / (N + h)) * p))
except ZeroDivisionError:
phi = atan(z / 1e-8)
if abs(phi - phi1) < 1e-8: break
return h, lamb, phi
def getZ(self, pt):
x = pt[0]; y = pt[1]
try:
return self.__pos[2] + self.__halfAxis[2] * sqrt(1 - ((x - self.__pos[0]) / self.__halfAxis[0]) ** 2 - ((y - self.__pos[1]) / self.__halfAxis[1]) ** 2)
except ValueError:
return None
def normalRadius(self, pt):
r = 0.
for i in range(3): r += ((pt[i] - self.__pos[i]) / self.__halfAxis[i]) ** 2
return r
# laplace rng
def rLaplace(r, mu, b):
p = r.uniform(0, 1)
if p > .5: return -log((1 - p) * 2) * b + mu
return log(p * 2) * b + mu
# return versor between two points
def versor(p, q):
d = distance(p, q)
v = [ 0 ] * 3
for i in range(3): v[i] = (p[i] - q[i]) / d
return v
# return points on line
def getP(t, v, q):
p = [ 0 ] * 3
for i in range(3): p[i] = t * v[i] + q[i]
return p
# stretch a section
def stretchSection(sec, p):
dx = (sec[-1][0] - p[0]) / (len(sec) - 1)
dy = (sec[-1][1] - p[1]) / (len(sec) - 1)
dz = (sec[-1][2] - p[2]) / (len(sec) - 1)
for k in range(1, len(sec)):
sec[k][0] -= k * dx
sec[k][1] -= k * dy
sec[k][2] -= k * dz
class Matrix:
@staticmethod
def RZ(phi):
return [[cos(phi),-sin(phi),0], [sin(phi),cos(phi),0], [0,0,1]]
@staticmethod
def RY(theta):
return [[cos(theta),0,sin(theta)],[0,1,0],[-sin(theta),0,cos(theta)]]
@staticmethod
def prod(m, v):
ret_v = [0]*len(v)
for i in range(len(m)):
for j in range(len(m[i])):
ret_v[i] += v[j] * m[i][j]
return ret_v
def convert_direction(phi, theta, phibase, thetabase, inv=False):
u = Spherical.xyz(1, phi, theta)
if inv:
m1 = Matrix.RZ(-phibase)
m2 = Matrix.RY(-thetabase)
else:
m2 = Matrix.RZ(phibase)
m1 = Matrix.RY(thetabase)
return Spherical.to(Matrix.prod(m2, Matrix.prod(m1, u)))[1:]