TITLE Delayer rectifier
COMMENT
-----------------------------------------------------------------------------
"delayer-rectifier" K current for action potentials
---------------------------------------------------
- potassium current, voltage-dependent
- iterative equations
Model of IKd for hippocampal pyramidal cells, from
Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
Added instantaneous conductance
Written by Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ikdT
USEION k READ ek WRITE ik
RANGE gkbar, g, vtraub
RANGE n_inf
RANGE tau_n
RANGE n_exp
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gkbar = .005 (mho/cm2)
vtraub = -55 (mV) : adjusts threshold
ek = -90 (mV)
celsius = 36 (degC)
dt (ms)
v (mV)
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
n_inf
tau_n
n_exp
tadj
g (mho/cm2) : instantaneous conductance
}
BREAKPOINT {
SOLVE states
g = gkbar * n*n*n*n
ik = g * (v - ek)
}
:DERIVATIVE states {
: evaluate_fct(v)
: n' = (n_inf - n) / tau_n
:}
PROCEDURE states() { : exact when v held constant
evaluate_fct(v)
n = n + n_exp * (n_inf - n)
}
UNITSOFF
INITIAL {
:
: Q10 was assumed to be 2.3 for both currents
:
: original measurements at room temperature
tadj = 3.0 ^ ((celsius-36)/ 10 )
evaluate_fct(v)
n = n_inf
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2
v2 = v - vtraub : convert to traub convention
a = 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
b = 0.5 * exp((10-v2)/40)
tau_n = 1 / (a + b) / tadj
n_inf = a / (a + b)
n_exp = 1 - exp(-dt/tau_n)
}
UNITSON