ttxSoma = 0 // simulate 20nM TTX in bath? 0 = no; 1 = yes
celsius = 35
v_init = -70
global_ra=200.00 // internal resistivity in ohm-cm
Cm=1.5 // specific membrane capacitance in uF/cm^2
Cmy=0.075 // capacitance in myelin
Rm=40000 // specific membrane resistivity in ohm-cm^2
Rn=50 // nodal resistivity
Vleak=-66 // leak reversal -66 in Cs+
Vrest=-70 // resting potential -60 in control, -66 in Cs+
ttxScale = 0.5 // amount that 20 nM TTX scales the available Na conductance; 1=no block; 0 = complete block
spinelimit=100 // distance beyond which to modify for spines
spinefactor=2.0 // factor by which to change passive properties
gnainit0 = 0.042 // Na conductance at soma
gnaslope0 = 0.000025 // Na channel density decay per um
gnabar=0.042 // sodium conductance
gnode=0 //40.0 // sodium conductance at a node; MSC switched this
setgk = .036 // A-type potassium starting density, used in init_bday.hoc
setokslope = 0 // slope of A-type potassium conductance along individual oblique branches. set to 0 in all simulations
gcad = 0.00125 // L-type Ca density, from Poirazi et al., 2003
caslope = 0
gkdr=0.040 // delayed rectifier density
gkap=setgk // proximal A-type potassium starting density
gkad=setgk // distal A-type potassium starting density
dlimit=300 // cut-off for increase of A-type density
dprox=50 // distance to switch from proximal to distal type
dslope=0.01 // slope of A-type density
okslope = setokslope // oblique potassium channel gradient
okmax = .5 // max potassium channel conductance
ampaWeight = 0.00018 // in uS; Jarsky et al., 2005
nmdaWeight = 0.00018 // in uS
theSeed = 1 // seed of random number generator
numSyn = 150 // number of synapses
slowInact = 0 // amount of slow inactivation. 1 = no slow inact; 0 = complete slow inact
// gnaTuft0 and gnaTuftS are not used
gnaTuft0 = 0.04 // initial VGNaC denisty in the tuft
gnaTuftS = 0.00002 // slope of VGNaC density in the tuft