COMMENT
Author: Mark Cembrowski, 2012
This is an extension of the Exp2Syn class to incorporate NMDA-like properties,
and incorporates some NMDA features from Elena Saftenku, 2001.
First, Exp2Syn is described:
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.
The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
A = a*exp(-t/tau1) and
G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
where tau1 < tau2
If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.
The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.
Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.
Next, two extensions have been included:
1. Ca tracking, mimicking Ca influx through NMDA channels
2. Voltage gating, mimicking Mg block
ENDCOMMENT
NEURON {
POINT_PROCESS Exp2SynNMDA
USEION ca READ eca WRITE ica
RANGE tau1, tau2, e, i, ica, mgBlock,theDrive,theEca
NONSPECIFIC_CURRENT i,ioffset
RANGE g
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
}
PARAMETER {
tau1=.1 (ms) <1e-9,1e9> : the actual tau's for use are in init.hoc (CL)
tau2 = 10 (ms) <1e-9,1e9>
e=0 (mV)
eca = 100 (mV)
alpha_vspom = -0.062 (/mV) :-0.075: -0.0602: -0.08: -0.062 :voltage-dependence of Mg2+ block from Maex and De Schutter 1998
: -0.0602 from Spruston et al. (1995) (Ching-Lung)
v0_block = 10 (mV): 0
caComponent = 0.1 : Ca component of total current
extMgConc = 1 (mM) : external Mg concentration
}
ASSIGNED {
v (mV)
i (nA)
ica (nA)
ioffset (nA)
g (uS)
factor
mgBlock
theDrive (mV)
theEca (mV)
:extMgConc (mM)
}
STATE {
A (uS)
B (uS)
}
INITIAL {
LOCAL tp
if (tau1/tau2 > .9999) {
tau1 = .9999*tau2
}
A = 0
B = 0
tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
factor = -exp(-tp/tau1) + exp(-tp/tau2)
factor = 1/factor
}
BREAKPOINT {
SOLVE state METHOD cnexp
g = B - A
mgBlock = vspom(v)
i = g*mgBlock*(v - e)
ica = caComponent*g*mgBlock*(v-eca)
theDrive = v-eca : for double-checking output
theEca = eca : for double-checking outptu
ioffset = -ica
}
DERIVATIVE state {
A' = -A/tau1
B' = -B/tau2
}
NET_RECEIVE(weight (uS)) {
A = A + weight*factor
B = B + weight*factor
}
FUNCTION vspom (v(mV))( ){
vspom=1./(1.+0.2801*extMgConc*exp(alpha_vspom*(v-v0_block))) :voltage-dependence of Mg2+ block from Maex and De Schutter 1998
:vspom=1./(1.+0.2439*extMgConc*exp(alpha_vspom*(v-v0_block))) : K0-1 = 0.2439 from Spruston et al. (1995) (Ching-Lung)
}