TITLE n-calcium channel
: n-type calcium channel
: Tuomo 2023:
: -Changed GHK formalism to a simpler multiplication by membrane potential minus reversal potential. Included eca in the READ block.
: -Parametrized the half-activation and half-inactivation voltages
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius (degC)
gcanbar=.0003 (mho/cm2)
ki=.001 (mM)
cai=50.e-6 (mM)
cao = 2 (mM)
q10=5
mmin = 0.2
hmin = 3
a0mWil =0.03
a0mRel =0.023 : Based on the observation that time constant is 30.67 percent larger in reluctant (PMID 25425625). a0m is inversely proportional to the time constant, and thus a0mRel is smaller than a0mWil
zetam = 2
vhalfm = -14
gmm=0.1
offmaWil = 19.88
offmbWil = 0.0
offha = 0.0
offhb = 39.0
offmaRel=29.88 : Based on the observation that voltage-dependence is shifted by +10mV by Gbg activation (PMC 2217198, PMID 25425625)
offmbRel=10.0 : Based on the observation that voltage-dependence is shifted by +10mV by Gbg activation (PMC 2217198, PMID 25425625)
ratioGibg = 0.0 : How large fraction is Gibg-bound. In the original model, this is calculated as VGCCGibg/(VGCC+VGCCGibg)
}
NEURON {
SUFFIX CaNtypeWillingReluctantFixedRatio
USEION ca READ eca, cai WRITE ica
RANGE gcanbar, ica, gcan, offmaWil, offmbWil, offha, offhb, offmaRel, offmbRel, a0mWil, a0mRel, ratioGibg
GLOBAL hinf,minfWil,minfRel,taumWil,taumRel,tauh
}
STATE {
mWil mRel h
}
ASSIGNED {
ica (mA/cm2)
eca (mV)
gcan (mho/cm2)
minfWil
minfRel
hinf
taumWil
taumRel
tauh
}
INITIAL {
rates(v)
mRel = minfRel
mWil = minfWil
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcan = gcanbar*((1-ratioGibg)*mWil*mWil+ratioGibg*mRel*mRel)*h*h2(cai)
ica = gcan*(v-eca)
}
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION alph(v(mV)) {
alph = 1.6e-4*exp((offha-v)/48.4)
}
FUNCTION beth(v(mV)) {
beth = 1/(exp((offhb-v)/10.)+1.)
}
FUNCTION alpmWil(v(mV)) {
alpmWil = 0.1967*(offmaWil-v)/(exp((offmaWil-v)/10.0)-1.0)
}
FUNCTION betmWil(v(mV)) {
betmWil = 0.046*exp((offmbWil-v)/20.73)
}
FUNCTION alpmRel(v(mV)) {
alpmRel = 0.1967*(offmaRel-v)/(exp((offmaRel-v)/10.0)-1.0)
}
FUNCTION betmRel(v(mV)) {
betmRel = 0.046*exp((offmbRel-v)/20.73)
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
UNITSON
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
mWil' = (minfWil - mWil)/taumWil
mRel' = (minfRel - mRel)/taumRel
h' = (hinf - h)/tauh
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a, b, qt
qt=q10^((celsius-25)/10)
a = alpmWil(v)
b = 1/(a + betmWil(v))
minfWil = a*b
a = alpmRel(v)
b = 1/(a + betmRel(v))
minfRel = a*b
taumWil = betmt(v)/(qt*a0mWil*(1+alpmt(v)))
if (taumWil<mmin/qt) {taumWil=mmin/qt}
taumRel = betmt(v)/(qt*a0mRel*(1+alpmt(v)))
if (taumRel<mmin/qt) {taumRel=mmin/qt}
a = alph(v)
b = 1/(a + beth(v))
hinf = a*b
: tauh=b/qt
tauh= 80
if (tauh<hmin) {tauh=hmin}
}