# coding: utf-8
# In[1]:
get_ipython().magic('matplotlib inline')
from fns import *
from fns.functionsTF import *
# In[2]:
params = []
res = []
config = load_config()
glist = [1,5,7]
for g in glist:
T = 120000
gpu = TfConnEvolveNet(config=config, T=T)
# number of excitatory neurons
gpu.NE1=800
# number of inhibitory neurons
gpu.NI1=200
# mean input drive
gpu.nu = 120
gpu.device = '/gpu:0'
# mean initial gap junction coupling
gpu.g1 = g
# do not save the spikes
gpu.spikeMonitor = False
# do not save the individual voltages, currents, etc.
gpu.monitor_single = False
# iteration
gpu.stabTime = 1
# rule: g0 = 0 for no bound rule, g0 = 10 for softbound rule
gpu.g0 = 10
gpu.runTFSimul()
res.append(gpu)
del gpu
gc.collect()
# In[3]:
## Evolution of the mean gap junction coupling
# In[15]:
scale = res[1].gm1[0]/5
for i in range(3):
plt.plot(res[i].gm1/scale)
plt.title('Mean gap junction coupling')
plt.xlabel('Time [ms]')
# In[ ]: