# Six Subunit Model of CaMKII # # Graupner, M. and Brunel, N., STDP in a bistable synapse model based on CaMKII and associated signaling pathways, PLoS Comput Biol, 3(11), e221, 2299-2323 (2007). # # Please note that this file allows to compute the steady-states of the CaMKII # phosphorylation level with respect to calicum. The parameter used here allow # to reproduce the data shown in Fig.3C by the blue line (p.2303) in the above # menioned paper. # The steady-state diagram consits of two separate branches which have to be computed # separately. This is the case since the initial point (specified by 'init') has to # be a fixed point on the respective branch. This file allows to compute the upper branch # including the UP state. The computation starts at Ca_0 = 0.2 \mu M. # # Note however that all the dynamic simulations of the model were not done with xppaut. # The dynamics of the CaMKII-system has been implemented in a C++ code. Please contact # the authors for further informations. # # this file is set to run: # 1. start xppaut and load file # $ xppaut # 2. lauch auto # click -> File -> AUTO # 3. run auto # click -> Run -> Steady State # and you will get the fix-points of the system with the bistability # # auto parameters @ NPR=400, NMAX=40000, DSMAX=0.01, DS=.01, PARMIN=0, PARMAX=2 @ AUTOXMIN=0, AUTOXMAX=2, AUTOYMIN=0, AUTOYMAX=210, AUTOVAR=Ta # # note that total receptor pop is conserved # so p0+p1+...+p10 is constant # this leads to a zero eigenvalue, so we set the total # receptor population to be p0i=20 and eliminate p0 # this allows AUTO to do its thing without # choking # # initial conditions to start at Ca=0.2 # required to compuate the fix-point island including the UP state # init B1=1.325911,B2=2.146327,B3=0.816472,B4=0.348016 init B5=3.218889,B6=1.346285,B7=1.380859 init B8=0.215422,B9=4.942081,B10=2.434134 init B11=1.284668,B12=8.591719,B13=4.727069 init PP1=0.00515738, I1P=0.00755588 init TA=132.3964 # # param Ca=0.2 param b0i=33.3 param K5=0.1, CaM=0.1 param L1=0.1, L2=0.025, L3=0.32, L4=0.40 param k6=6, k7=6 param PP10=0.2 param k12=6000 param KM=0.4 param k11=500, km11=0.1 param I10=1 param Kdcan=0.053, ncan=3, kcan0=0.1, kcan=18 param Kdpka=0.11, npka=8, kpka0=0.00359, kpka=100 # occupied receptors rr=sum(0,12)of(shift(B1,i')) # p0 is whats left from total B0=b0i-rr # total activated and inactivated subunit concentrations tact= B1 + 2*(B2 + B3 + B4) + 3*(B5 + B6 + B7 + B8) + 4*(B9 + B10 + B11) + 5*B12 + 6*B13 # kinetic equations phossum=B1 + 2*(B2 + B3 + B4) + 3*(B5 + B6 + B7 + B8) + 4*(B9 + B10 + B11) + 5*B12 + 6*B13 #PP1=Ca^3/(KL^3 + Ca^3) #PP1=base + kpp1*Ca^3/(KL^3 + Ca^3)*KH^4/(KH^4 + Ca^4) k10=k12*PP1/(KM + phossum) # C=CaM/(1 + L4/Ca + L3*L4/(Ca^2) + L2*L3*L4/(Ca^3) + L1*L2*L3*L4/(Ca^4)) gamma=C/(K5+C) vPKA=kpka0 + kpka/(1 + (Kdpka/C)^npka) vCaN=kcan0 + kcan/(1 + (Kdcan/C)^ncan) # at last the equations B1' = 6*k6*gamma^2*B0 - 4*k6*gamma^2*B1 - k7*gamma*B1 - k10*B1 + 2*k10*(B2 + B3 + B4) # B2' = k7*gamma*B1 + k6*gamma^2*B1 - 3*k6*gamma^2*B2 - k7*gamma*B2 - 2*k10*B2 + k10*(2*B5 + B6 + B7) B3' = 2*k6*gamma^2*B1 - 2*k7*gamma*B3 - 2*k6*gamma^2*B3 - 2*k10*B3 + k10*(B5 + B6 + B7 + 3*B8) B4' = k6*gamma^2*B1 - 2*k7*gamma*B4 - 2*k6*gamma^2*B4 - 2*k10*B4 + k10*(B6 + B7) # B5' = k7*gamma*B2 + k7*gamma*B3 + k6*gamma^2*B2 - k7*gamma*B5 - 2*k6*gamma^2*B5 - 3*k10*B5 + k10*(2*B9 + B10) B6' = k6*gamma^2*B2 + k6*gamma^2*B3 + 2*k7*gamma*B4 - k6*gamma^2*B6 - 2*k7*gamma*B6 - 3*k10*B6 + k10*(B9 + B10 + 2*B11) B7' = k6*gamma^2*B2 + k7*gamma*B3 + 2*k6*gamma^2*B4 - k6*gamma^2*B7 - 2*k7*gamma*B7 - 3*k10*B7 + k10*(B9 + B10 + 2*B11) B8' = k6*gamma^2*B3 - 3*k7*gamma*B8 - 3*k10*B8 + k10*B10 # B9' = k7*gamma*B5 + k6*gamma^2*B5 + k7*gamma*B6 + k7*gamma*B7 - k6*gamma^2*B9 - k7*gamma*B9 - 4*k10*B9 + 2*k10*B12 B10'= k6*gamma^2*B5 + k6*gamma^2*B6 + k7*gamma*B7 + 3*k7*gamma*B8 - 2*k7*gamma*B10 - 4*k10*B10 + 2*k10*B12 B11'= k7*gamma*B6 + k6*gamma^2*B7 - 2*k7*gamma*B11 - 4*k10*B11 + k10*B12 # B12'= k7*gamma*B9 + k6*gamma^2*B9 + 2*k7*gamma*B10 + 2*k7*gamma*B11 - k7*gamma*B12 - 5*k10*B12 + 6*k10*B13 # B13'= k7*gamma*B12 - 6*k10*B13 # PP1'= -k11*I1P*PP1 + km11*(PP10 - PP1) I1P'= -k11*I1P*PP1 + km11*(PP10 - PP1) + vPKA*I10 - vCaN*I1P # dummy to get steady-state value of total phosphate - this can be plotted now # in AUTO! ta'=-ta+tact aux act=tact #@ total=2000,dt=5,meth=cvode #@ total=100,dt=0.001 @ total=1000,dt=0.001 @ bound=100000 @ maxstor=100000 @ njmp=10 done