% Burgess 2008's oscillatory interference models
% eric zilli - 20111106 - v1.01
%
% This is the bat implementation of Burgess 2008, accounting for
% Yartsev et al. 2011's report that grid cells in bats that lack theta
% activity in the LFP and in the ISIs/spiking autocorrelation.
%
% This bat-time we will take the simplest approach and simply set the
% baseline frequency to zero. In this case the phases of the active
% oscillators are themselves the displacement along their preferred
% directions, rather than those displacements being represented in the
% phase difference between the active and baseline oscillators (like the
% Blair et al. 2008 model, though perhaps one could imagine other ways
% to implement this).
%
% See Burgess2008.m for more information about this model.
%
% This code is released into the public domain. Not for use in skynet.
function [dt spikes occupancy spikeTimes] = Burgess2008_bat(varargin)
batMode = 1;
if ~isempty(varargin)
batMode = varargin{1};
end
if batMode
baseFreq = 0; % Hz
else
baseFreq = 5; % Hz
end
% second parameter says whether or not to plot figures:
showFigs = 1;
if length(varargin)>1
showFigs = varargin{2};
end
% third parameter is baseline frequency override
if length(varargin)>2
baseFreq = varargin{3};
end
% are the oscillators combined with a sum or product?
oscillatorInteraction = 'sum'; % 'sum' or 'product'
% are the active VCOs or baseline sinusoidal or spike/delta-shaped?
VCOOutput = 'sine'; % 'sine' or 'spike'
baselineOutput = 'sine'; % 'sine' or 'spike'
% does the grid cell reflect only its immediate inputs or does it integrate
% them over time? integration makes more sense with oscillatorInteraction = 'sum'
% but if it is 'prod', we'll multiply the oscillations first and let the result
% be leakily-integrated. NB that though Burgess states that leaky
% integration is a reasonable assumption for entorhinal neurons, it is
% specifically untrue for stellate cells, which are famously resonant
% and so have a more complex response than simple integration.
integrateGridInputs = 0; % if =1, grid cell is a leaky integrator; if =0, grid cell only responds to immediate inputs
baselineModulation = 1; % if =0, no baseline oscillation is used; if =1, a baseline is used
directionalVCOs = 0; % if =0, VCOs output to grid cell for any heading; if =1, VCOs only output if heading is within 90 degrees of their preferred direction
nVCOs = 3;
% Threshold to determine when the grid cell has spiked
spikeThreshold = 3.5;
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 0; 20;
if showFigs
livePlot = 0;
end
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Directional preference of each VCO (this also sets the number of VCOs)
dirPreferences = (0:nVCOs-1)*pi/3;
% Scaling factor relating speed to oscillator frequencies
% NB paper uses 0.05*2pi rad/cm. But we do the conversion to rad later,
% leaving 0.05 Hz/cm = 5 Hz/m which produces very tight field spacing. For cosmetic
% purposes for the trajectory we use here, we'll use beta = 2.
beta = 2; % Hz/(m/s)
T = 0.010; % s, time constant for integration of oscillations if used
C = 1/0.5; % normalization coefficient. the integral works out to be pi*(2n-3)!!/(2^(n-1)*(n-1)!) by my reckoning
if integrateGridInputs && dt>(0.05*T)
warning('Your time step dt should be much smaller than the time constant T!')
dt = 0.05*T;
fprintf('Using dt = %g, but frankly it should be smaller!\n',dt)
end
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
f = 0;
%% Firing field plot variables
nSpatialBins = 60;
minx = -1; maxx = 1; % m
miny = -1; maxy = 1; % m
% minx = -0.90; maxx = 0.90; % m
% miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = zeros(1,1000);
spikeCoords = zeros(1000,2);
spikePhases = zeros(1,1000);
spikeind = 1;
%% Initial conditions
% Oscillators will start at phase 0:
VCOPhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2); % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% VCO frequencies are pushed up or down from the baseline frequency
% depending on the speed and head direction, with a scaling factor beta
% that sets the spacing between the spatial grid fields.
VCOFreqs = baseFreq + beta*speed(tind)*cos(curDir(tind)-dirPreferences); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
VCOPhases = VCOPhases + dt*2*pi*VCOFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Sum each dendritic oscillation separately with the baseline oscillation
if strcmp(VCOOutput,'sine')
VCOs = cos(VCOPhases);
elseif strcmp(VCOOutput,'spike')
VCOs = (1/2+cos(VCOPhases)/2).^50;
end
if directionalVCOs
% Directional VCOs do not output unless they
% are within 90 degress of the VCO's preferred direction
VCOs = VCOs.*(cos(curDir(tind)-dirPreferences)>0);
end
if strcmp(baselineOutput,'sine')
baseline = baselineModulation*cos(basePhase);
elseif strcmp(baselineOutput,'spike')
baseline = baselineModulation*(1/2+cos(VCOPhases)/2).^50;
end
VCOsPlusBaseline = VCOs + baseline;
% Threshold individual oscillator pairs
VCOsPlusBaseline = VCOsPlusBaseline.*(VCOsPlusBaseline>0);
% Final activity is the sum or product of the thresholded oscillations.
if strcmp(oscillatorInteraction,'sum')
act = sum(VCOsPlusBaseline);
elseif strcmp(oscillatorInteraction,'product')
act = prod(VCOsPlusBaseline);
end
if integrateGridInputs
% final output f is a leaky integration of the combined oscillations
f = f + dt*(-f/T + act*C);
else
% final output f is simply the current value of the combined oscillations
f = act;
end
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
if mod(spikeind,1000)==0
% allocate room for next 1000 spikes
spikeTimes(spikeind+1000) = 0;
spikeCoords(spikeind+1000,:) = [0 0];
spikePhases(spikeind+1000) = 0;
end
spikeTimes(spikeind) = t;
spikeCoords(spikeind,:) = [x(tind) y(tind)];
spikePhases(spikeind) = basePhase;
spikeind = spikeind+1;
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
if ~useRealTrajectory
figure(h);
subplot(121);
plot(fhist(1:tind));
title('Activity');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
title(sprintf('t = %.1f s',t))
subplot(122);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases(1:spikeind-1),2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(1:spikeind-1,1), ...
spikeCoords(1:spikeind-1,2), ...
zeros(size(spikeCoords(1:spikeind-1,1))), ...
30*ones(size(spikeCoords(1:spikeind-1,1))), ...
pointColors, 'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
else
figure(h);
subplot(131);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
subplot(132);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(133);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases(1:spikeind-1),2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(1:spikeind-1,1), ...
spikeCoords(1:spikeind-1,2), ...
zeros(size(spikeCoords(1:spikeind-1,1))), ...
30*ones(size(spikeCoords(1:spikeind-1,1))), ...
pointColors, 'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end
end
spikeTimes = spikeTimes(1:spikeind-1);
spikePhases = spikePhases(1:spikeind-1);
spikeCoords = spikeCoords(1:spikeind-1,:);
if showFigs
figure; hist(diff(spikeTimes(1:spikeind-1)),500); title('Grid cell ISI histogram')
end