TITLE h current for Octopus cells of Cochlear Nucleus
: From Bal and Oertel (2000)
: M.Migliore Oct. 2001
NEURON {
SUFFIX hcno
NONSPECIFIC_CURRENT i
RANGE gbar
GLOBAL hinf, tau1,tau2
}
PARAMETER {
gbar = 0.0005 (mho/cm2)
vhalf1 = -50 (mV) : v 1/2 for forward
vhalf2 = -84 (mV) : v 1/2 for backward
gm1 = 0.3 (mV) : slope for forward
gm2 = 0.6 (mV) : slope for backward
zeta1 = 3 (/ms)
zeta2 = 3 (/ms)
a01 = 0.008
a02 = 0.0029
frac=0.0
thinf = -66 (mV) : inact inf slope
qinf = 7 (mV) : inact inf slope
q10=4.5 : from Magee (1998)
eh (mV) : must be explicitly def. in hoc
celsius
v (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
i (mA/cm2)
thegna (mho/cm2)
hinf tau1 tau2
}
STATE { h1 h2 }
BREAKPOINT {
SOLVE states METHOD derivimplicit
thegna = gbar*(h1*frac + h2*(1-frac))
i = thegna * (v - eh)
}
INITIAL {
trates(v)
h1=hinf
h2=hinf
}
DERIVATIVE states {
trates(v)
h1' = (hinf - h1)/tau1
h2' = (hinf - h2)/tau2
}
PROCEDURE trates(v) {
LOCAL qt
qt=q10^((celsius-33)/10)
tau1 = bet1(v)/(qt*a01*(1+alp1(v)))
tau2 = bet2(v)/(qt*a02*(1+alp2(v)))
hinf = 1/(1+exp((v-thinf)/qinf))
}
FUNCTION alp1(v(mV)) {
alp1 = exp(1.e-3*zeta1*(v-vhalf1)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION bet1(v(mV)) {
bet1 = exp(1.e-3*zeta1*gm1*(v-vhalf1)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alp2(v(mV)) {
alp2 = exp(1.e-3*zeta2*(v-vhalf2)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION bet2(v(mV)) {
bet2 = exp(1.e-3*zeta2*gm2*(v-vhalf2)*9.648e4/(8.315*(273.16+celsius)))
}