{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tqdm import tqdm_notebook as tqdm\n",
    "from hippocampus.plotting import tsplot_boot\n",
    "import matplotlib.pyplot as plt\n",
    "from definitions import ROOT_FOLDER\n",
    "import os\n",
    "import pandas as pd\n",
    "from hippocampus.agents import CombinedAgent\n",
    "from hippocampus.environments import HexWaterMaze\n",
    "import numpy as np\n",
    "import random\n",
    "import seaborn as sns\n",
    "from multiprocessing import Pool\n",
    "%matplotlib notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# some hyperparameters \n",
    "\n",
    "eta = .07  # learning rate for reliability estimators\n",
    "learning_rate = .1  # step size for value and SR learning\n",
    "inv_temp = 10  # inverse temperature parameter for softmax action selection\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(<Figure size 432x288 with 1 Axes>,\n",
       " <matplotlib.axes._subplots.AxesSubplot at 0x1a22ffd320>)"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXl0G3WWPX5Lkvd9t/EWL/FuZyWBOHFwLBNMgIbuoTt0umF+wwkdCJyBkGZCs0wgMEC62Zp1moZwMj00NPBtQgghtrM5cRwHJ3G8L5IXWY5s2ZYtb7LW+v2hqUIlVUlVsk2Co3tOzgFVSU8lWa8+n/fuu5cgSRIeeODBtQvRlX4DHnjgwZWFJwl44ME1Dk8S8MCDaxyeJOCBB9c4PEnAAw+ucXiSgAceXOPwJAEPPLjG4UkCHnhwjcOTBDzw4BqH5EoEjYyMJBctWnQlQnvgwTWB8+fPD5MkGcXn3CuSBBYtWoS6urorEdoDD64JEATRy/dcz3bAAw+ucXiSgAceXOPwJAEPPLjG4UkCHnhwjcOTBDzw4BqHJwl44ME1Dk8S8MCDaxxXhCfgwdULi8UCvpJzYrF4nt+NBz8GPEnAAxozMzO4ePEiTCaTy3NJkkRGRgZiY2N/hHfmwXzCkwQ8oNHT04OAgABERka6PHdmZgbd3d2IiIiAl5fXj/DuPJgvzElNgCCIUIIgviAIoo0giFaCIG6ci9f14MfD+Pg4RkZGEBERwet8X19f+Pj4QKlUzvM782C+MVeFwTcBfEeSZBaAJQBa5+h1PfgRQJIk5HI5wsPDQRAE7+dFRUWhv78f09PT8/juPJhvzDoJEAQRDKAIwIcAQJKkgSTJsdm+rgc/HtRqNfR6PUJCQgQ9TywWIzQ0FF1dXfP0zjz4MTAXNYFUAEMA9hEEsQTAeQD/TpLk1By8tgfzDJPJhO7ubkRFWadOZTIZHnzwQfq4QqHAzp07MT4+jk8++QTh4eEAgF27dqGkpARhYWHo7e2FRqOhj3nw0wIxWwcigiBWAjgLoJAkyVqCIN4EME6S5DN25z0A4AEASEpKWtHby3vS0YN5RE9PD0ZGRhAXF+dwzGw2Y8WKFfjmm2/w2WefISAgANu2bXM4b2pqCmNjY1ixYgVEIg/15GoAQRDnSZJcyefcufjGlACUJEnW/t//fwFguf1JJEn+hSTJlSRJrqTuOh5cWeh0OiiVSnB9H6dPn0ZycjISEhKcvk5AQABIksTAwMB8vE0P5hmzTgIkSQ4A6CMIIvP/HioB0DLb1/XAPZAkCaPRyOufTCZDaGgoJBL2XeGBAwdw55130v+/b98+SKVS7NixA2NjzLJPdHQ0enp6MDU1xSu2xWKZ18/BA/6Y9XYAAAiCWArgrwC8AXQB+P9IkhzlOn/lypWkR1loftDZ2YmBgQGXVX6z2YzOzk5IpVJ4e3s7HDcYDFi+fDmOHz+OqKgoDA0N0d2DvXv3Qq1W47XXXmM85/vvv4dIJEJYWJjL9+nt7Y3ly5dzJiAPZgch24E5+QZIkqwHwCugB/OHiYkJqNVqpKSk8Nqba7VatLa2YsmSJQ7Hjh8/jvz8fHqrYLtl2LJlC+677z7G+aOjo1Cr1SgtLWVNKvZQqVRQKpXwaE1eeXiqOAsEVK8/LCyMd3EuNzcXSqUS4+PjDse++uorxlZgcHCQ/u/Dhw8jMzOTcX5DQwOysrJ4JQDAmlSUSiV0Oh2v8z2YP3iSwALB8PAwdDodQkNDeT/Hz88PqampaGxsZDyu0+lQVVWFsrIy+rEXXngBJSUlkEqlOHPmDHbv3k0fUyqVMBqNSElJ4R1bIpF4OAZXCTwbsgUAs9kMuVyO6Ohowc/NyMhARUUFBgYG6GEgPz8/NDc3M8576623OGM3Nzdj2bJlgtuDFMdgbGxMUPLyYG7hWQksACiVSojFYvj5+QGwEn5KS0vpf5mZmfjggw8AAB999BHWrVuH4uJivPDCCxCLxcjLy0NTU5NbFfuOjg4EBwfTCchZbAB4//33ER8fD41GA4IgEBkZCblc7ukWXEF4VgI/cczMzECpVCIxMZF+LD09HRUVFQB+IPyUlZWhuroaR44cQWVlJXx8fDA8PAwASEhIQHd3N+RyORYvXsw79tTUFLq6urB+/XqXsQGgv78fVVVViI+Pp88PDAzE2NgYBgcHWQlLHsw/PCuBnzh6enoQFBTE2WqzJfzs378f27dvh4+PDwAwRoYLCgrQ0dEBg8HAO3ZzczOSkpIQGBjoMjYA7N69G0899ZRD+zIqKgo9PT0wGo28Y3swd/CsBK5CmEwmXstjrVYLjUaD5ORkznNsCT9dXV04d+4c9u7dCx8fHzzzzDNYunQpACAkJATXXXcdLl26hJycHJexx8bGoNFoIJVKecUuLy9HXFwccnNzHc7z8fGBj48Purq6eBcX+XYhPHANTxK4yjA5OYlLly7xOvfy5csIDQ3lJAYZDAaUl5fjySefBGBdnmu1Whw8eBD19fXYtm0bampq6OcnJCTg66+/prcJzjAyMoK0tDTOFYhtbJ1Ohz//+c/45JNPOF8vICAAp06d4hXbYrEgOTkZSUlJLs/1wDU8SeAqg1wuR2hoKC/WXWRkJKqqqpCWlgZfX1+H4/aEn7i4OJSVlYEgCLqar9FoaCGRtrY2FBUV8aoLTE5O4uTJk5iamkJAQIDT2K2trVAoFCgtLQVgJQpt3LgRhw4doguKTU1NSEpK4rUSMJlMUCgUiI6OZr1uD4TBUxO4ijAyMoKpqSleCQAAgoKCEB8fj6amJtbj9oSfjRs3orq6GoA12RgMBnr8t7+/H3q9HmlpabxiBwYGIikpyaGVyBY7OzsbDQ0NqK2tRW1tLeLi4nDkyBE6AajVami1WmRlZfGKLZFIEBwcjO7ubl7ne+AcniRwlcBsNkMmkwnu9WdnZ0OtVmN0lDmqwUb42bx5MxQKBTZs2ICHHnoIb7zxBgiCoHv9ubm5gnr92dnZ0Gg0Dkt4tthcsFgsaGxsRHZ2tqA5goiICIyOjkKr1fJ+jgfsmJMBIqHwDBA5oq+vDwMDA4z2GV/I5XIolUpGq04I2tvbMTw8jMLCQsHP7enpQVdXFzZs2OBW7Nm89/HxcUxPT2PZsmWCZNGuBfzoA0QezA56vR4KhYJupXGp+5w/fx5yuRyA9QcQHByMiooKpKSkoKenB319fQy+AB/odDrI5XKsXbuW8bjZbEZZWRliY2Oxf/9+nDp1Ci+88AIsFgsCAgLw+uuvIyUlBYsWLUJPTw+6u7sF0YYBwGg0or29HTfccIPT6x4dHUV5eTlNLnr99dcRGxuL4OBgaLVaDA4OeqTPZwHPSuAqQHt7O2ZmZljFPWzVfWzFPZ577jkEBwfjscceA2DdV1+8eBElJSWCltV1dXXw8vJymCT87//+bzQ0NGBiYgL79+/H2rVrsW/fPixevBgff/wx6uvr8cYbbwCwzi2cO3cOpaWlguTH6+vrYTAYsGrVKqfXHRISgqCgIADAhx9+iI6ODrzyyisArGSpwcFBXH/99Z6xZBv82MpCHswC4+PjGB4e5pT6ZlP3IUkSBw8exM9+9jP6sejoaAQHB6Ojo4N37JGREajVamRnZzMev3z5Mo4ePYp77rmHfowgCExMTACwjizHxMTQxyIjIxEREYH29nbesScmJqBUKlFQUMB63Pa6qQQAANPT04ylPyV93tfXxzu2B0x4Uuc8wGKx8GLekSSJzs5OhIeHcxbk7NV9AKC2thZRUVFITU1lPJ6fn0+LgPBpndXX17OO//7nf/4nnn76aUxOTtKP/elPf8Jvf/tb+Pr6IigoCAcPHnSIfezYMURFRcHf359X7PT0dM73aX/dL7/8Mr744gsEBwfj888/Z5wbFRWF3t5ehISE8IotFos9hik28CSBeUBLSwu0Wq3LYpXRaERnZyduvvlm1uP2ZB8KX331FWMVQCEwMBAikQhVVVWMuycbLBYLVCqVQy2goqICkZGRKCgowJkzZ+jHP/jgA/zP//wPli9fjvfeew/PPfcc/vSnP9HH/f394eXlhVOnTiE4ONhl7P7+fixf7iBFyXndu3btwq5du/DWW29h37592LlzJ31MLBZjdHQUVVVVvLorBEFg+fLlNH36WocnCcwxNBoNxsfHeRfJRkdH0dbWhry8PIdj9mQfwEqUOXz4MA4fPuxwvkqlgpeXF8rKyni1+i5cuIDm5mbGj7Gurg7l5eU4duwY9Ho9JiYm8Nvf/hZyuZw+74477sCWLVsYrzU8PAySJHHnnXfy2ps3NDSgtbUVK1c6blvZrpvCXXfdhXvvvZeRBLRaLQYGBlBSUsJrBTQ0NISenh4HYZRrFZ6awBzCYrFALpdzqveyITc3FwqFgrH0pmBP9gGAU6dOIT09Hdddd51DbKG9/tzcXAwMDDB67U8++STOnz+P2tpavPvuuygsLMS+ffswPj5OdyaqqqocWIWUshDf4lxWVhbUajVGRkZcXret8Eh5ebkDoamhoQEZGRm82YMREREYHh5mVVS6FuFJAnMIlUoFkiRZabRcCAgIQHJysgPrj4twc+DAAdatgEwmg7e3tyCegY+PD9LT013OKkgkEvzxj3/EAw88AKlUii+//BJPP/00fZzykBCiF+jt7Y2srCxeqkYvvfQSNmzYAKlUipMnT+L555+njwllOgKASCRCeHg4urq6eNuwL2R4WoRzBIPBgLq6Olx33XWCJ9zMZjMqKyuxbNkyt9SB9Ho9jh49isLCQsFWYhaLBceOHUN2drZbRCWj0YiKigqsWrWKl5uxPY4ePYrFixe7NQxkNptx9OhRFBQUuMUTUCgUSE1Ndeszv9rhIQtdAfT29sLf359OAFzElxtvvBG7du2CXq+HRCLBf/3Xf2HZsmU0v97ZaC4XmpubERsby0gA9mSf06dPY8+ePTAajcjPz8err74KiUQCkUiE3NxcNDQ0IC4uTrBEWHt7OyIiIhgJwD72XXfdRW93RkZGsHTpUnz00UcArF2FixcvIj4+HmKxWFBsmUyGgIAAOgFwfeYDAwOoqKiAt7c3kpOT8dprryEkJARRUVHo6upCeHj4Nc0xmLPtAEEQYoIgLhIE8c1cveZPBZOTk1Cr1YwfAqWwU1FRge+++w5+fn4oKyvDiy++iB07dqCiogI7d+7Eiy++CABISkqCl5cXve/mi9HRUahUKofC4l//+ld6326xWPDoo4/i3XffxbFjx5CQkMBos8XFxSEoKEgQx4C67t7eXuTn53PGBoB//vOf9GdhqzQEWPkNISEhaGtrExSbYjraxub6zIuKinDs2DFUVlYiNTUVb7/9NgCrlqJEIkF/f7+g2AsNc1kT+Hdcg5bkfKS+bYkvzkg3BQUFaGtrE6Tu09TUhIyMDMYWxJ7sMzo6Ch8fH3rfXFRUhG+//ZbxOvn5+ZDL5ZiZmeEdu7GxESkpKYzePBvRiMLk5CSqq6txyy23MB7Py8tDb28vpqb4e9g2NzcjPj6esx1p+5mvX7+evtMvX74cKpWKPi86Ohp9fX3XtPT5nKyBCIJIALAJwIsAdszFa15pzMzM8FL3GRkZwfT0NG91n+eeew6//vWvsWfPHpAkiQMHDtDnhYWFISYmBvX19bxm+ilLcfuimD3ZJzw8HEajEZcuXcKSJUtw6NAhXL58mfGcoKAgJCYmoq6ujlX9xx4ajQZarRbXX3+909i2OHz4MAoLCx04DNRYcn19PS9Vo/HxcajVat6qRrb49NNPcccdd9D/L5FIEBISAplMxru46Ofnt6AGluZqI/QGgCcAOGeo/EQwOjqK5uZmXntUhULhtCVoT3zZv38/du/ejU2bNuHrr7/G448/js8++4w+PzY2FkePHuXVvhoeHkZqaipjBcJG9iEIAu+++y52794Ng8GAoqIi1muLiYnB+fPnea0GNBoNEhMTGXtpLqIRhQMHDrCuEAAgPj4e586d43VHHh0dRWRkJGcBlotk9eabb0IikeDnP/8543EfHx+cPHkS4+PjLmsiFosF0dHRggRZr3bMOgkQBHEbADVJkucJgrjJyXm21uSzDTtvoHr90dHRnAKatggNDcXp06eRmprK+kdpT3z5/PPP6RbX7bffjt///veM2O3t7diwYQOvaUBK3Wd6eppekrORfR555BG89dZb+Oc//wkAOHnyJKvpR2trK4qKinjdEaenp3H8+HFMTk7Sn5Oz2BqNBhcvXsRf//pX1tdraWnBmjVreAmLGAwGVFRUYHR0lFWAhY1s9I9//AOVlZX4xz/+4XAXb2lp4a1qZLFY0Nvbi7i4OF5/Hz8FzEVNoBDAHQRB9AD4FMAGgiD+Zn/ST8WafHBwEBaLhfcXTAl08lX3iYmJQU1NDQDrvtX2D6+7uxsSiYT3OHBgYCCSk5MZvXY2ss9bb71FC3/o9Xq88847+O1vf8t4LYVCAZPJxHtJ7O/vj5SUFF6xAeCbb76BVCplJfSoVCpMTU0hIyODV2xvb29kZGTw/syPHz+Od999Fx9//DHtzUBheHgYGo3GYYiKCyKRCKGhoZDL5QuGYzAX1uRPkiSZQJLkIgCbARwjSfI3s35nVwBGoxE9PT2CGH8AkJOT48C8A9iJL3/84x/x/PPPQyqV4pVXXsHevXsBWH+c7e3tnFN1XMjMzMTIyIhLgc733nsP69evh1QqRWlpKWNmwGw2o7W1VXDsjIwMjI+PM3wKufD111+z7tHdYToCQFpaGvR6PZRKJeNxts+cqlFs3rwZpaWl+I//+A/6mFCmI2Ct3UxPT7OyHX+KmFOy0P9tB3aSJHmbs/OuVrKQXC6HVqt1i3jS2dkJlUqFoqIit2LX19fDZDKxculdobe3F3K53G11n+bmZkxMTNDiHkLQ19dHb2GEcgwAq4ORWq12GGTig4GBAVy6dAlSqVQwxwCwfm7d3d246aabBD9Xp9NheHgYK1eudCv2fOOK6QmQJHnCVQK4WjE1NQWVSkWvArjstJqbm3H77bejpKQE9913H93uS0tLg8FgcKvnrNVq0d/fz+j1r169GiUlJSgtLaXvaqOjo9i8eTMKCwuxefNmjI2NAQDdmejp6XHrunt7e+nY/f39+Jd/+ResX78excXF9B5+27Zt9GexevVqWjk4MTHRLX4DYF39yGQyB56B2WzGzTffjHvvvReAtQ378ssvY+3atVi/fj0+/PBDANYiqjv8BsC66mtubqavm+v7PnjwIIqLi5GQkMCgV/v5+UEkEi0IjsG1S5OyAyX1TWV1LjutBx54AM888wxuvPFGfPrpp3jvvffwxBNPzIp519TUxDpb//nnn9NqwADwzjvvYO3atXj44Yfx9ttv45133sFTTz0FwMoxOHfuHBISEgQtbe1dhCQSCf7zP/8T+fn5mJycxC233IKioiK8//779HMoVSMKBQUFqKmpQVJSkqDxXDamI/AD2YhKsP/4xz9w+fJlVFVVQSQSMbY+eXl5OHXqFBYtWuSw33cGe6Yj1/et0+nwwQcfYNeuXQ6vQXEMfurS554BIvwg9W37g7OFLfFELpfTy+Z169YxSDfuMO+oohifltORI0dw9913AwDuvvtufPfdd/SxyMhIREZGorWVP1+LKorZVuRjYmLoO3NgYCAWL16MgYEB+jibqlFYWBiio6MFsf5GR0dx+fJlB6YjG9lo//79eOyxx+jEasvMDA4ORmJiosMgkjNwMR0p2H7fixcvRnp6Out5Xl5eCAoKcmsFdjVhwa4ETCYT9Hq9y/MsFgva2toYzD172BJPMjMzUV5ejo0bN+Kbb75xIN3k5+fj5MmTCAkJcTlIRJIk6uvrsXTpUoeVA0EQuOeee0AQBH7zm9/gN7/5DYaHh+n3GRMT41CYys3NxbFjxxAeHs7rznTx4kWnUt99fX1oamrCsmXL6Me4VI3y8vJQWVmJsLAwXlOU9fX1yMzM5KVq1NPTg6+//hrfffcdIiIi8PzzzzPi5+Tk4MiRI7Qvoys0Nzc7MB1twUU0YkNERAS6u7uhUqlciqkAVgGUq23VsCCTAEmSaGhogF6vd8ns0uv1kMvlnG05e+LJa6+9hmeeeQavv/46br75ZgeZqoCAABiNRly4cMGl1JXJZMLQ0BCrvuBXX32F2NhYDA8PY/PmzZx3I/vYBEHg/PnzLn8MZrMZKpUK69atYz0+NTWFrVu34rnnnmO8Fpeqka+vL7y8vHDhwgWXk4wWiwV9fX0OAqNcZCODwQAfHx8cPnwY3377LR5//HGa8wBYtzD+/v44f/4852rOFj09PZyrAC6iERcIgoBWq8XZs2d5uSqbzWYsXbpU0Lj5fGNBJoHBwUEYjUanVF5bDA8Po6Ojg5Wyak88SU9Px9///ncA1jrC0aNHGef39vYiLCyMd8W5rq4ObW1tDu05qkMRGRmJsrIy1NfXIzIyEoODg4iJicHg4KBD8lAqlfD19eVdqa+vr0dDQ4PDj9FoNGLr1q246667cOutt9KPO1M1otqEt912G6+aRFNTE1pbWxmxuchGcXFx2LRpEwCgrKwMO3YwmekjIyPQ6XS4/fbbeY1xt7e3o6WlhdVnwZmqERsmJibQ39/PyYGwh0ajgVwuF9yOnU8suJqA0WhEd3e3oF5/fn4+uru7MT097XDMnnhCFaUsFgvefPNNBunGaDSy/qCdITc3F0qlkkETnp6eppfD09PTOHnyJDIzM3HzzTfT03+ff/45Nm7cSD/HbDajqakJeXl5gpSFqLoABZIk8fjjjyM9PR2/+93vGOc7UzVqampCTk6OIGUhe/ciLrLRLbfcQtun1dTUOGxFGhsbWQVTubB48WK6G2QPNjUnZ2hsbHQqmGqP8PBwTE1NXVUcgwWXBJRKJXx8fATtu9iYdwA78eSrr77C2rVrUVRUhNjYWPzqV7+ij7W2tiIyMpLXkpSCn58f0tLSGLGHhoZw5513QiqVYtOmTSgpKUFxcTG2b9+OqqoqFBYWoqqqCtu3b6ef09HRgaCgIEEcBy8vL2RmZqKhoYF+7Pvvv8eXX36JM2fO0O0yarXDpWoklOkIWJfwlIaCq0Gt7du349ChQygpKcFLL72EP/7xj/QxiulonxicQSQSIT8/H42NjYzYbN/34cOHsWLFCpw/fx733nsvfv3rX9PHVCoVJicneTMdKURFRUEul/MaUPsxsKCUhaanp3HhwgUkJycLJnDMViGH4vEXFxfzkr22hcViQWVlJfLz83ntK+2h0+lw/PhxrF27lldxyj728ePHkZ6eznv7ZAtK1ejGG2/kbaRqixMnTiA5OVmwexEwe0Wm6upqREVFCf4RA7NXZFIqlYiPj3fruXxwzZqPdHV1MXr9f/nLX1BcXEwbcM7MzEChUOC2225DYWEhtm3bRs/ue3l50X1+d3Dp0iWkpqYyEgAb4YeNfEJxDOzvTHxhP1vPRfhpamrCbbfdRr+fixcv0nfF1tZWmEwmwbFbW1sRHR1NJwCu2ADw0UcfYd26dSguLsYLL7wA4AcNBaPRKDh2W1sbQkJCGAnAnmj06KOP4oYbbqBXNbbzBnl5eZDJZG5pCchkMvj6+tI/Yi6yERfBKyYmBr29vbw6WPONBZMEKIda6o9RpVLho48+wrfffotjx47BbDbjwIEDePHFF7F161ZUV1cjJCSELvIB7jPvBgcHMTk5ySph/fnnn6OiooIupmVlZeGDDz5woOjGx8fDz88PnZ2dgmKzuQhRhJ+TJ0/i4MGD+Pjjj9HR0cGpahQdHY3w8HDB6j5sTEeu2NXV1Thy5AgqKytx/PhxbNu2DYB1jxwRESGI3wA4Mh0p2KsaAdbZAUpxyPZ8avhLaGw2piOXqhFF8KqursbatWvxzjvvALDedPz9/aFQKATFng8siCRgsVggk8kQFRXFaAmaTCbMzMzAZDJBp9MhJiYG1dXVdKX57rvvxpEjRxivVVBQgJaWFt53RcpaOycnh1dBzhn5pKCgADKZTLC6j31RjIvw40zVKCcnBwqFgrU4ygU2piNX7P3792P79u00o9B2y5WXl4e+vj76vfGBPdMRcK5qxIWcnByoVCoHa3dXsdmYjhRsyUauCF5qtVrQdc8HFkSLcGBgACRJMv4g4uLisG3bNqxatQq+vr5Yv349CgoKEBISQlew4+LiGGw44Afm3fnz53ntU/v7++Ht7c1aFGMj/DgDdWc6f/48LwYhNfbsrChmS/hxpmpEqfucO3eOl7qPRqPB5OQkbrzxRl6x9+zZg3PnzmHv3r3w8fHBM888g6VLlwKwjiWnpaXh/PnzvGJrtVoMDw87ODdxqRq98soreOONN1BYWIg//OEPDGozJX1+4cIFTu6ALaampqBUKh0k0mxhSzZyRvASiUQICwuDXC7HkiVLrpha0YJIAuPj4w688bGxMRw5cgRnz55FcHAwfve73+HYsWMOz2X74MPDw1FbW8vrjjwwMMDpZMNG+HE1qRcREYHGxkZeKxG1Wu1UoMWe8LN3716nqkZRUVG4cOECrz/G4eFhpzMS9rHNZjO0Wi0OHjyI+vp6bNu2DTU1NXSsqKgo1NbW8oqt0WgQFhbGS9XoySefRHR0NAwGA5544gm8++67tJMzhejoaJw6dQpisdhl/PHxcfj6+gpWNeJCQEAANBoNzGbzFVM8XhBJICkpCRcuXGAUBU+dOoWkpCSaUFNWVoa6ujpotVqYTCZIJBKoVCoHurDZbEZnZyc2btzIq0swMTGBqqoqZGVlObQl2Qg/zpIARWEuLS3l1SWYmprCiRMnGOo+FNgIP65UjZqbm1FUVMTLRGRmZgZHjx6FVqt1WBazxY6Li0NZWRkIgsCyZcsgEomg0Wjo74dSFuKzAjIYDKisrMTIyAj9fGeqRoBVQuxXv/oVYxCKQlNTE1atWsVrFWKxWFBRUUGTtuxhTzZyRfBSq9VYtGjRFZU8XxA1AX9/f8TFxTGIJ/Hx8bhw4QJ0Oh1IksTp06eRkZGBNWvW4NChQwCsPwr7JWVbWxvCwsJ4twkpgU77rgIX4ccZKB19vm3CgIAApKamOvAbuAg/zlSNent7IRKJeLsI+fr6Ij093UHdhyv2xo0bacKPXC6HwWCg+RQWzNdPAAAgAElEQVRKpVKQixCbexEX0YhiMpIkie+++85BvmxwcBDj4+O824QikQg5OTmcnRx7spEzgtf09DQsFotbbeG5xIJIAoB1NTAzM0O3XJYvX45NmzZh48aNKCkpgcViwZYtW/DUU0/hL3/5CwoLCzE6OsooInFVnF0hOzsbIyMjDOYdF+GHi3yi0+kgk8kEx6bUfdRqNf0YF+GHS9XIHaYjwM6844q9efNmKBQKul37xhtvgCAImM1meq5fyPh1amoqrffnDA8//DBKSkpQUlKC0dFR/Pu//zt9zB2mI2DVUPD29nbQUGAjGzkjeA0NDSE9Pf2Ki5IsKLKQSqVCX18fEhIS3Hr+uXPn4O/vL/iHCFjvbn19fW6p1ABWh2CRSEQXy4RAqVSira3NbXUfatjKXj6cD1QqFRobGyGVSt2K3draCo1Gw8rjd4Xh4WGcO3cOGzdudOuHJJfLoVQqsX79esHPHR0dRU1NDUpKStyyOB8dHYXJZMKSJUsEP5cPrlmyUGxsLMRisVstF7Va7TBbz0b22bNnD4qKiiCVSnH//ffTuoIpKSkwm80u70xsoFyEqD0pF+GGS9UoISEBXl5e6O7uFhx7YmICfX19tNfAjh07UFBQwJAq47pmwLrXDwgIgEwmExxbp9Ohq6uLrspzXferr76KFStWONCYIyMj3eIYANyajvZkIwpPP/00o14RFhaG2NhYtLS0CI5tsVgwOjoqyER1PrGgkgBBEEhLS8Pw8LAgJViq1882W29P9uGytJoN844Su6QqzlyEm9///vf4wx/+gKNHj6KsrAzvvfce/RruuBdRsdPS0mim4y9/+Uv87//+L+Mcrmum4C7zrrGxEQkJCTTTkeu6AWDr1q00GaekpIR+jfz8fPT29rKanThDW1sbg+lIgY1sdOnSJQcRWcDKMbh8+TLrMWcYGhpCbGzsVSNZvqCSAGD1AQgLC2Psz12hu7sbYrGYF3felaWVUOadUqmE0WhkFOm4CDfOVI3CwsIQFxcn6M5EMR1ti2I33HADQkNDeV8z4B7zjlJItnU7cqVqxAZ/f3/W4S9n0Gq1UCqVvFSNzGYz9uzZw7Bip+Dr64uMjAxBVHODwQCdTndVeW8siBahPVJSUnD27FnodDqXfV+qNcamduuK7GNvaQVYx3OPHj2KoKAg3spCq1at4txP2xJuXKkaZWdno6KiAkFBQS6HmEiSxKVLlwQX5NiuGbDeFcvLyxEcHMxLMINiOvJRNfr++++xb98+fPHFFygoKMCzzz7LSFRZWVk4cuQIPUvgCq2trazjv2xko3379uHmm2/mVJ5KS0tDd3c3mpqaWMVh7DExMeHgHXmlsSCTgI+PD4xGI6/9udFoxNTUFOv0nTOyD5ellZ+fH8xmM9rb23kpC2m1Ws7JP3vCjStVI0oBlxordgaLxYLh4WFef7gUuK4ZsLbtvL290d7ezktZaGBggJNtaH/d9957Lx599FEQBIG9e/fi+eefx2uvvUafL5FIEBAQgM7OTl6TjEql0qEgx0Y2GhgYwDfffIMvvviC87VEIhH8/Pwgl8vp4SBnIEmSIdd2NWAubMgSAewHEAvAAuAvJEm+OdvXnQ0GBgYQGhrKu8p/7tw5tLa2OtBGucg+ziyt5HI5IiMjOWW77HHx4kW0tLRg+fLljMfZCDd8VI38/f15+w80NTWhoaGBl9+As2sGQG8RysrKeK0soqOj0dDQ4NAVYLtuW4GYLVu24L777mM8Z3h4GDMzMygrK+PV6ouLi0NTUxOjK8BGNtqwYQO8vb3p96jT6VBYWEjzHYAf6NO33nqrQ1Jmw9jYGLq7u68oTdgec1ETMAF4nCTJbAA3ANhOEIRr6tU8wWAwoKenR9B8eW5uLhQKBWMZyEX2cWZppdfr0dnZKajFSLkX2Q6wcBFunKkaUf12Ib3+7OxsB3UfNji7Zur9NDY2Ij8/n/fWIiMjA5OTkwz3Iq7rtj3n8OHDDNKVxWJBQ0ODU8FUe6SkpMBoNDLci9jIRi0tLaivr0dtbS1qa2vh5+fHSACAdVuTkZHBKwEA1poVZVxytWDWKwGSJFUAVP/33xMEQbQCiAcgvHcyB1AoFPDz8xO057Jl3lFL1KGhIdx///0ArD+wO++8E8XFxSgsLIRer8fmzZsBWAtlr7zyCgAr9TUmJkaQuIaPjw8WL16MxsZG2r2IItxkZ2fTJh+7du1Cd3c3Pv74YwDArbfeylA1amtrQ3h4uCBBFLFYTGsoUKuHhx56CDU1NdBoNFixYgV27tyJt99+m/OaAeFMR4DJvIuKioJIJOK87q+++gotLS0gCAIJCQmM2BTTUYggikgkQkFBAS5evIi4uDi3yTq9vb0wmUyCBVGio6PR1dWF8PDwK04UAubehmwRgCoAeSRJcnprzxdZaHJyEpcuXUJycrJg4gqlUrNkyRK3bMi0Wi1Onz6NkpISwZLSlEpNZmamIIkuCpOTk6iqqkJRUZFbbacTJ04gKSlJkEQXBUrVqLCwkFdRzh5VVVWIi4tzy+rbaDSisrISq1evFiTpRqGmpgahoaG8zUhtYTKZUFlZieXLl7ulatTf34+YmJh56xJcEbIQQRCBAL4E8ChbAiAI4gGCIOoIgqgbGhqaq7AMUC5CVAJgUxbat28fCgsLER8fz2gjUndFd9V9GhoaGBXnmZkZbNq0CVKpFMXFxfjTn/4EAKzKRhTHoKWlxa3YlLU2lQDYCD979+6lzUjvueceRustPz/fLY4BYK20X3fddXQCYIvNZeVFxe7s7HRLYae1tRURERF0AnCmagQA77//PuN7z8/PR1dXF6ampgTHplZetglAq9Vi69atKCoqwvr161FXV8dJ8IqJiUFfX58g7Yj5wpwkAYIgvGBNAP9LkuT/Yztnvq3JR0ZGMD097VJZ6Prrr8enn37KSi1OSEiAt7e3YOZdf38/9Ho9427m4+NDF9PKy8tx4sQJnD9/nlPZKCYmBoGBgYLVfdiYjmyEnwcffBCVlZWoqKiAVCrF66+/Th+LiIhAdHS0YOadPdORKzaXmhLgPvOOYjryUTUCrN9RVVUVQ9OP0lBobm4WFHt6ehoKhcJh6vDZZ59FcXExqqqqUFFRgcWLF3MSvCQSyVXjXjTrJEBYS5wfAmglSfI1V+fPB8xmM60sZAt7ZaHY2Fjk5eU5XXILZd5xWWsTBEH3y00mE4xGIwiCcKpstGTJEk7pc67YbExHNsKPbctwenraoTLNJn3uCvZMR67YztSUAPeYd/ZMR8A52Wj37t146qmnHK6bb3HUPra9qtHExARqa2tpopG3tzdCQkKcErwiIiKg0WgEMw7nGnPBEygE8FsAjQRB1P/fY38gSfJbJ8+ZU6hUKohEIsYfBJuyEJ9BEYp5V1tby2usVqVS0aPM9jCbzbjlllvQ09ODf/3Xf8WiRYucKhsFBgYiMTERtbW1vEZbKckwvkWxl19+GV988QWCg4Pp8VYKfn5+SE1Nxblz53jtkTUaDQwGg1sqwfagmHd8VY3GxsYwPj7OW9WovLwccXFxDHYiBYlEgqysLNTV1fFSFpqYmMDIyIjDsFVvby8iIiLw2GOPoaWlBQUFBXj++eedErwIgkB4eDjkcjmWLVv201UWIknyNIAr2vCcmppyKMaxKQt9+eWX+MUvfuHy9YKCgiCXy3m1nAYGBjh/hGKxGBUVFdBqtbj//vtZRUTtv/jg4GC0tLTw6m6o1WoHIxBn2LVrF3bt2oW33noL+/btw86dOxnHQ0JCcOHCBV7uvkNDQ4iOjnZrcpANoaGhdEJ1BY1Gg6CgIF6qRhKJBH/+85/xySefOI09PDzMa2mu1Wrh5eXlUNU3m81obGzEnj17sHz5cjz77LN4++23XRK8fH19odFoYLFYrlinYEEwBpOSknD+/HnGXZZLWchVEjAajZDJZCgpKeFVcaYq89PT05x/wCEhIVizZg0uXLjgVNmIYhredNNNvDoUVGWeTd3HGe666y7ce++9jCRgsVjQ0tKCoqIiXh0Kg8GAiooKjI6OuuU3YA+Kus2nQ0FV5tVqtUNl3p5s1NraCoVCQbccVSoVNm7ciEOHDtHPbWhowOrVq3l1KKhOTn9/P6O+EBcXh7i4OJr0tWnTJrz99tt44oknnBK8KGWhK9kqXBADRH5+fkhISIBt14FNWYjPl2xfcXYFqrhkP0QyMjJC7/V0Oh1t4eVM2aijowPBwcG8W5R+fn6s6j5s6Orqov+7vLzcYYxVLpdzCqaygVL3cdenwRa9vb0uBVNtQbkX2Xdy2MhGlMsRRfiJi4vDkSNH6ATQ398Pg8HAe6yX8ohobm5mxI6OjsZ1111Hj1RTSlbOCF5TU1MgCMKtlvRcYkEkAcBa2TcajfQ4K5ey0IcffogVK1ZApVJBKpUy7oZUxVmowg5bcWlwcBB33303rSxUVFSE0tJSTmWjqakpxmw9X6Snpzuo+zz00EO44447IJfLsWLFCvz973/HSy+9hA0bNkAqleLkyZO01iDwA9NRaGw25h1bbGdWXu4wHQGrR4REImF0cpxZqLGBUhYSwnQEftBQsN/e7dmzB4888gikUimam5vxyCOPcNrWkSRJKwvN1ZbKXSwoZaHBwUH09PS4RbgBgDNnziA8PJxut61evRqBgYEQiUSQSCQ4fPgw9u7di/LychAEgcjISLz++uuIjY1Fb28v5HI5b96+Pc6dOwc/Pz/k5+djx44dqKysRGRkpINC8vvvv489e/agsbGRXq3MVt3n4sWLIEnSYX5hZmYGv/jFL6DX62E2m7Fp0yaHOoJarcbFixchlUrdWtI2NTVhcnKSrqCzXfvo6CgefPBB9PX1ITExEe+//z5CQ0Oh0Whw9uxZlJaW8qbt2qKtrQ0jIyOM+QWz2YyysjLExsZi//79ePzxx2luQ0pKCt544w0EBARgfHwcp0+fRnFxMa8aij0oroI7KlZ8cM0qC0VHR8Pb29utlotKpaLHPG1hLyrC1W+nWIq2y26+oJyBqao8W68dYO91A9x3Jj7QarW4fPkya1Wei+tgi+joaAQHB9P9eCGYnJxEb28vYxXAdu1cLj4UTVponx+wtknZLMLtRUV2796NyspKVFZWIj4+Hvv27QNgLeAmJCS4FdtsNmNsbMwthuZ8YEElAUpZSKPRCFYW4it26azf7i7zjuq3U0VNtl47wN3rBtxzL6JiZ2RksFKdubgO9nCXedfY2Ijk5GRGQZXt2p25+BQUFECpVAqWlGtubkZiYiLj+2QTFaGOkySJmZkZxvVnZWVBrVYLthkfGhpCfHy8YOPa+cKCSgKANUNHREQIIn9QRTH7OywlKnLLLbfgb3/7G/34yy+/jJUrV+Kf//wnQ7vfHeYdpXngipPgrNcNWP9Y4+PjeRUJKVBMR2dFMbPZjNLSUhQUFKCoqMhhywC4x7xTq9XQarUOEuBscObiQ0mfC1EWouo39nwISlTE/kbw2GOPYenSpZDJZPi3f/s3+nE26XNXoBSx3RXDnQ8siBahPVJSUlBdXY3JyUmXBAyqMFVcXOxwjEtUxFm/PTc3F+Xl5fD19XWpQmuxWHDp0iWX2gM6nc5lrxuwFiiPHDmC9vZ2l/tUkiTR2NiIFStWOF392HMd2traWH+4VOzm5maXgiYkSdIsy7kw3cjIyEB5eTkaGxt5tUqbm5uRlZXFqCNwORgBwOuvvw6z2Yynn34aX3/9NWN6MzU1FTKZDBcuXOA1wTk1NYXc3Fy3ahjzhQWZBCQSCcxmM/gMKhkMBuj1etYfjSsHIbZ+u4+PD0iS5EV8sVgsmJmZcXleT0+Py143YHW6FYlE6OvrczlNSJIkxsfHeUmBAT9wHU6cOMGaBCQSCcRiMZRKpcsfIkmSGB0dZd3ysMGVi49IJIKXlxeUSiWvLcno6KjD5+PKwUgsFuOOO+7Ae++9x0gCgHU1olKpeG0DLRaL4CnT+caCTAIqlQqhoaGcS2d7XLhwAS0tLQzNf8odJjAwkBYVeeyxx9DV1UUXdNj67Z2dnYiKiuKto+/v74/m5manmv9Ur5vC6tWrcfjwYQcuQ3d3NwIDA3l7H4SGhqKxsZHzvY6MjEAikSAkJITmOjz00EOs5yqVSkgkEt7eB5GRkWhoaOClwES5+Dz88MMOLj6A9fs2m83YuHEjr9ixsbFobGxkdHKefPJJ2j/wzJkzeP/99/HnP/8Z3d3dSElJAUmSqKiocJiBGB4exuTkJG655RZe3ZHx8XF0dXVdUZqwPRZcTUCv16O3t1fQjHd2drbDAAuXg5CzfrtOp4NcLhfUb8/Ozqa7AxTYeu2uYDQaWXX0nYFS9+FS9OXiOtjDttfPt0WZlpYGvV6P/v5+xuNs1+7MxYcaorIf4HIGqv7iSoOSJEk8+uijtIORWq12MDNtaGhAbm4u7/ZocHAwDAYDQy3pSmNB8QQAoL29HTMzMw4Tha7Q0dEBtVrNqjrMF3V1dfDy8hLsKtPd3Y3e3l633YsA6x/jzMwMVq1aJeh5s3UvAqwsy7GxMacDPWyg+A0lJSVu02bb29sxPDws2MGIci9yl2MAWFmYCoVC8Pc2MzMDtVqNlStXzpsR6TXLE5iYmGAo6LKJijz88MNYt24dNmzYgB07dsBoNAKwMu+mp6cdNPX5YmRkBIODg8jOzuYUFOESNElOTobFYnF7ttwV05HLVQewMi19fHwcfPX4whnT0ZXIx2zciwDrj8nWv5ErHpugCuVe1N7e7lZsk8mEtrY2xnWziYo0NTXhtttuo12sLl68CF9fX7qGcTVgwSQBkiQhl8sRHh4OkUjEKSpy1113oaqqCkePHsXMzAxdcafUfdxVFmpqaqJn67lINlyCJpTmXVtbm2D3IsDab09LS+MsOLG56tgiLy8PHR0dbikLNTc3O8zWU3Am8kEhPz8fcrlcsHsRYP3M4+Pj6UIkVzwugpe77kXUdUdHRzOKlGyiIi+++CJ27NiBiooK7Ny5Ey+++CIAK8lKqVS6dd1zjQWTBIaGhjAzM8OoTLOJipSUlIAgCBAEgaVLlzLu/O4y7xQKBYxGI10k5CLZOBM0iYyMFOxeBFiX1PYuQrZgI8DYg9JQEMIxAByZjvbg4ygUHByM+Ph4wcy70dFRqNVqRmyueFwEL39/f6SkpAjq8wPW4l5/fz+j8MwlKkIQBE1kmpiYoPkOYrEYoaGhbjFM5xoLIgmYTCZ0dXUx6gC2oiLLli1DcHAwQ1TEaDTiyy+/dOAHCGXemc1mtLa2shpbuiLZ2INN+twZuFSNbMFFgGGLPTAwIFjdx5mLkC1sRT7skZ2dLZh519DQgMzMTE4uhn08LoIXZe0upFDX2NiIlJQURlvZVlTk5ptvxs6dOzE9PY3nnnsOL7zwAlauXIk9e/bQHQjAmny1Wi1Dbv5KYEG0CPv7+yGRSBhfiitRkT/84Q9YvXo1Vq9ezXgtinl3+vRpXqo5/f39CAoKcuhG8CXZ2CIgIADJycmorq52KsdFQa1WQyKRODAdKTgjwNjDx8cH6enpOHv2LC9Vo5GREVgsFl7qS/aOQvagmHe1tbW8VI1GR0eh1+s5vx+2eFwEL4lEgpycHHz//ffIyclx2bYbHx/H2NiYg14il6jIxMQEdu/ejU2bNuHrr7/G448/js8++wwA6CE0mUyGlStX/nSVha4G6PV6hwqvM1GR1157DSMjIw6FKgp+fn6YmJjgdVfUarVO9fZdkWzYYk9OTvKK7UrQwxUBxh4BAQEYHR3lRbkeGhritE+zBZujEBv8/f2h1Wp5xR4eHoavry/r6sZVPDaCV0BAAB3b1Q9xbGyMJkbZgktU5Pvvv6fbyLfffjtjFQJYk5DJZPIoC80WycnJqKurQ2hoKJ0MbEVFfH19cfr0aSxZsgSffPIJTpw4gc8++4z1j0iv19MjwXwoqNnZ2Th+/DjGx8fpH4UQko0tjEYj2trasH79el4UVL1ej6NHj3ImAzYCDFcCoLYW69ev52UiQqn7DA8Pc75XLkchtthNTU1Yt24dL069xWJBZWUlVCoV471yxXNF8GpoaMCaNWt46yVWVlZCoVAwPANsRUXS09NpURGFQoGamhqsWbOGdXU5NDSElJSUK6ostCCSgI+PDxITExmae7aiIhKJBLm5udiyZQsWL16MhIQE2ln31ltvZRBAWlpaEBsby1uuy8/Pjy4uUb3qwcFBPProo7BYLLBYLLj99ttRWlqKDz/8EO+++y6GhoYglUqxYcMGun0IWHveERERvF2EfHx8kJmZiYaGBl4iqs7Q2dkpyEWIEui0dS+yB5ejUElJCeM8uVwOLy8v3kM1tuo+MTExdDLnivfpp59CLpdDJBIhPj4eL7/8Mv1alKqREAcjyr0oPj6e8eOlREWMRiOSkpLw2muvYePGjXj22WdhMpng6+uLvXv30udPTExAIpFwOh7/WFgwZCGz2Yy6ujpERka6JfIA/OAiVFpaKsjGzGw2o6KiAkuXLnVbKmpychInT55EcXGxoBFTi8WC48ePIyMjw20xFUqrcO3atbyW+LY4duwY0tLSBP2IbGEwGFBeXo7CwkLBWoVVVVWIjY3lVcNgA7WaWblypSD7NgA4e/YsgoKCeFPT7UGSJHp6epCXl+eWc5MrXJNkIbFYjLS0NKjVardfg5qtpxLA6tWrUVJSQhM9bGHrZiMWi5GXl4empia3OAbADxVnf39/VhefV199FStWrHCQzbJ1L3KHYwBYe94JCQmsCeD48eNYt24dCgsL8fbbbzscLygoQHNzM026EoqmpiZcd911rAngr3/9KzZs2IDi4mJ88MEHDseXLFkCmUzmlnsRwO7faE+s4iKX5eXlobe31y33IsA6zhweHj4vCUAo5sqB6BaCINoJgpARBLFrLl7THURERMDf39+tlotSqWSdrbdXFgLYFX5mw7wbHBzE+Pg4fUfjUhbaunUrKioqUFFRwVhSz0bdZ2RkBGq1mrVoaTab8dRTT+Fvf/sbjh8/jq+++sohxmyYd1qtFgMDA6x307a2NnzyySc4dOgQKioqUFlZ6dBTDwkJQWxsrFvqPpOTk1AoFA6x7YlVXOQyd92LAOsKRKvVzolnw1xgLhyIxADeAVAGIAfAPVfKmpxSFhobGxN0R6YGYPgoCwHcCj8FBQWCmXdUUSwnJ8elspAz5OfnC3IvotDY2IjMzEzW7c/FixexaNEiJCcnw9vbGz/72c8Yjkm2sd1h3lH+jWy9/s7OTixfvhx+fn6QSCS44YYbGIpCFPLy8qBSqQQn/qamJiQnJzNGqdmIVc7IZVlZWYLdiwBrazcxMfGqGSmei5XAKgAykiS7SJI0APgUwM/m4HXdQmBgIKKjo3lpCVCQyWQIDAx02M+zKQs5U/gJCQnBddddJ4h5193dDYlEwms/v2/fPkilUuzYsQNjY2OMY4GBgUhOThbEflMoFDCZTJzKQgMDAwxzE3vHJAruMO8oVSMuPkRWVhbOnj0LjUYDnU6HY8eOMdx7KHh7eyMjI0PQZ86lauSMWMVGLqOkzxsaGnjfdHQ6HUwmEye340pgLroD8QD6bP5fCWA1x7k/CpKTk3Hq1CmHHwobKMMP+4o1wK4s5ErhJycnB4cPH4aXl5fL4iJJkmhpaWFVNbLHvffei0cffRQEQWDv3r14/vnn8dprTOvHzMxMfPvtt6ivr+dVHG1tbcWaNWucvj97cPXRMzIy8N1336G+vp6XoElLSwtWrVrFufJavHgxtm/fjnvuuQcBAQHIycnhbKOlpaVBLpfTbWJXoLQjbF/PFbGKi1yWnJyMzs5OnDt3jldxUafTYdmyZfM2PegO5uKdsP1VOPz1EATxAIAHAMybJzsFkUhEq/a4AsXtZ/vB2isL1dTUuFT4ob7cyclJl8s9s9kMo9HIa5TVlhK9ZcsW3HfffQ7niMViiMViTE5OuhRaJUkSer3eqQRaXFwc4+5r75hkC4lEApFIhLGxMZcFSpIkodPpXCbJe+65h16av/TSS5ztS5FIBLFYzJvyrNPpHK7bGbHKFblMIpHQ7T5XsFgsV1UCAOYmCSgB2K5lEwA4rNtIkvwLgL8A1hbhHMTlRH9/P8LCwnj79Hl5eaGpqQkrV/7QUeFSFnKl8NPW1oaYmBjes/V+fn5oampite22BSWvBQCHDx9GZmamwzkymQzBwcG8NRECAwNx6dIlFBUVsR5funQpuru7oVAoEBsbiwMHDtBy3/bo6uqCv78/79n68PBwNDY2Oj2fIiL19/fj8OHD+Prrr1nP6+vrg0gkQnFxMa+aTkxMDJqamhAVFUWfz0WsckUuGxgYgF6v5+27MDk5ia6uLoSGhl5x0xEKc5EEvgewmCCIFAD9ADYD+LXzp8wfZmZm0NfXJ2i1kZ2d7cC8Gxoawv333w/Aese+8847XS7bp6am0NPTI4i4k5WV5eCr99BDD6GmpgYajQYrVqzAzp07cebMGbS0tIAgCCQkJOCVV15hvI5er4dMJhMkrpGeng6FQuHgq0dBIpHghRdewK9//WtYLBb86le/Yk0+BoMBbW1tDktlZ0hLS6MTDNd3tXXrVoyOjkIikeDFF19kXeqbzWZ6ec/3R5WYmIiuri50d3e7tB/btWsXJ7mMKuoKURYKDAzE2NgYBgcHeROz5htzQhYiCOJWAG8AEAP4iCTJF52dP5/KQq2trTCZTA5ilK4gl8uhVCpnxbyzdRESAoVCgY6ODkilUrdjc7kIucJs3YsAa5XfYDAwVlJ8MFv3IsC6v9dqtYJVjUZHR1FTU4OSkhKXqtBc6OzsxMDAAC+dRFvo9XoMDAxg5cqV86Y6/KOThUiS/JYkyQySJNNcJYD5hFarpUkYALuy0OOPPw6pVAqpVIqtW7fSZI+UlBSYTCb09fU5C8EJ29l6LmUhLuJJUlISvLy83Fb3GR0dxeXLlzktrfRDIxYAACAASURBVJyRnuLi4hAYGOgWxwCwTtUplUrWbgkb6ckW0dHRCAkJEayhQGF6ehrd3d100uVSFtqzZw+KiooglUpx//33Q6vVIiwsTLBHhC0MBgM6OzsZnzmbstC2bdtogtfq1atRWloKHx8f+Pj4QKFQuBV7rnF1bErmACRJQiaTITIyEgRBcCoLcdlKzYZ5Z7FYGLP1XMpCXMQTwNrvbm9vd0vdp6mpicF0ZAMb6YkCpe4j1L0I+EHViK0bwUV6ssVsmHeUgxHVjeBSFioqKsKxY8dQWVmJ1NRUmvmYl5eH/v5+t2zrmpqaEBsby2A6sikLvf/++zTB69Zbb6UnG6OioqBSqdxmHM4lFkwSGBwchMlkYsyrsykLObOVcpd519vbC5FIRM/WcykLOSOeUO5FQu+KXExHIaA0FITajFN/xFy9fj6kJ3eZd8PDwxgZGWHUKLiUhdavX09X5JcvX05/7pR7kVBFJTamI5eyEAWSJHHw4EH87GdWCg2lLOTu6m8usSCSgNFoRHd3N29lIS5bKUA4844a/xWiLMSlapSbmwulUonx8XFesc1mM5qamlwyHbns1Oxj20ufO4OtqtFsx2DdYd5RUt9ce2ouJaNPP/2U8bkvXrzYwdrdFS5duuTAdORSFqJQW1uLqKgohglpeHg4pqamBHsZzjWuroalm+jv74ePjw+jL+9MWciZrRTFvDt58iRvZaGwsDAHIxBnykJcxBM/Pz+kpqaiqqqKl7LQwMAA/P39XU4uctmp2cLLywuZmZn0HLwrqNVqiMXiOWG+Ucy7mpoa1u6DPUZGRmA2mzknF7mUjN58801IJBL8/Oc/px+jtoG1tbWszsz20Gq1mJ6edvh+uJSFnnjiCQDW74BaBdgiKioKMpkMYWFhV6xluCBWAmaz2eEDtFUW8vLyopWFKFC2UocOHXJ4PbFYDKPRyOufyWRyeie0VRYCQBNPdu/ezXo+pTTDNz4f4gmbnRobRCIRTWDic91z+UcrkUig0+kwNTXl8p9Op+P8zLmUhagazdtvv+3AehSLxdDr9ZicnHQZm2uFyKYsRNGoTSYTDh8+TLcZbUEQhCAH7fnAglgJJCYmoq6uDgaDgS6OcSkLubKV0ul06O7uxk033cRrtj4jIwNHjx6FVqul94BcykJ8VI06Ojqwfv16XrP1WVlZqKiocKruw0V6sofJZEJ7ezvWrVvHi/5qNptx9OhRB3Ufd0BtLdatW8frtSwWC44dOwalUskQIuFSFjp+/DjeffddfPnll6wFzIaGBtx44428uSUnTpxAb28vY6XIpSwEWG9I6enprOS1oaEhpKamXlHi0IJIAt7e3khOTkZ/fz/9R8GlLPTLX/6SptXm5OTgpZdeYrxWc3Mz4uPjeYtrUAKdtr56XMpCSUlJTlWNWltbER0dzVtcw8vLC7m5uU7VffiSnlpbWx1m651BLBazqvvYgo30xCZ93tHRIUjVSCQSIS8vD/X19YiLi6NXBVzKQs8++yz0ej02b94MwPq3QZGturq6IJFIBJHLCgoKUFtbi4SEBEZNgk1ZCAAOHDjAuhXQarXw9fUV7JY111gwykIWiwXnz59HaGgob6dde4yMjKC2thZSqVSQshB1Z8rOznZ7jzwxMYGqqiqUlJQIHjE9duwYUlNTeSn/soFSNbrpppsEf3anTp1CbGysU3MTZ5iZmUFlZSXWr1/v0tLcHtXV1QgPD+elUMwGg8GAyspKrF69WjC57Pvvv4ePj48g70dbWCwW9Pb2oqCgQPB188E1qSwkEomQlpYmaITYHo2NjbSLEMBOsmFT+LHVvHNXWYiarff19eUk2Xz00UdYt24diouL8cILL9CPz8a9iLruRYsWsSYANgKMLSgNBXc4BoC1356QkMD6Q2Aje9mC6uS46+LT1tbm4CJkryzEZR2Xm5uLvr4+t9yLAOsNJzIycl4SgFAsmCQAWFsuwcHBvNtctlAoFLBYLIwWDsBOsmFT+JkN847qt1N3UzaSTXV1NY4cOYLKykocP34c27Zto49R7kXusN/UajXGx8c55dDZCDC2oDQUWlpaBMfWaDRQq9WsbEMuspct3HUvAriZjvbKQlzWcf7+/khLS8OlS5cExzYajZicnHR75TbXWFBJAABSU1MxNjYGs9nM+zm21tqzgTvMO8paOz8/n95Xs5Fs9u/fj+3bt9O9afu9u1D3Iip2Q0MDsrOzWavtrggwFHJycjAwMCBY3YdSNeLq9bORvdhiC3UvomLbMx3ZlIWcWcdR1u5CbcbVajWSk5PdnlmYayy4JODv74+4uDhBxJO2tjaEhYU5/LC4SDZcCj9BQUFISEgQxLyTyWT0e3aGrq4unDt3Drfddht+8YtfOLT5AgICkJqaKkjdp7u7G15eXpxFMVcEGAo+Pj5YvHixoNi9vb0wmUycXAxXNnIUvLy8kJWVJSg2F9ORr2UbBZFIhJycHEEmtlS35mqZIAQWSHfAHklJSTh58iTUarVLRxmz2QyZTIaNGzc6HGMj2bhS+MnJycGhQ4dQV1fnssBnsVjQ0dFBV7JdvU+tVouDBw+ivr4e27ZtQ01NDeP6MjIycOjQIdTW1ros8JEkidbWVqexXRFgbJGWlobOzk6cOXPGZWeFJEm0t7ejqKiI8wfnykbOFqmpqZDJZKipqeGlLNTe3o7rr79ekLIQFxITEyGXy1FdXc2rszIzM4MbbrjhipqN2GPBrQSAHySwKJ6+s38kSYIkSdY/RjaSTVRUFMRiMUQiEbZs2cJJvOET2/79OkNcXBzKyspAEASWLVsGkUjkUPugOj0ikYhXfLFY7JSo4owAwwW+salzueCK7GUPkiRpEpOrf2zkMkpZaPXq1XjooYdQXV2NRx55xOm12kJI7CvlOciFBbkS6OvrQ3h4OG8jEIlEgsbGRgaNl4tk40rhp7W1FXFxcVixYgWv2D4+Pgz3Ii5s3LgR1dXVWLNmDeRyOQwGgwNVuaOjA1FRUbj++ut5xfbz80NjYyOnhoIzAow95HI5goKCXCokUQgMDERDQwNuuukm1mTARfZiQ09PD7y8vDgVkuwRGRmJxsZGBr9BiGWbLfr7+2EymbBhwwZe24jp6WnagPRqURa6Ot7FHGJ6ehr9/f2CCBiZmZkYGRlh1BGGhoZw5513QiqVYtOmTSgpKaFbcyUlJZBKpThz5gyD/js5OYm+vj5BoiLp6ekOAywPPfQQ7rjjDsjlcqxYsQJ///vfsXnzZigUCrpd9sYbbzDuKPaz9XxAaSj09vZynkMRYKRSKZqbm1nvjjMzM+jo6BBUWF20aBFEIhFnbFuyV0lJCSwWC7Zs2eJwnslkYh3gcoa4uDgEBARAJpO5PPfDDz/EihUroFKpIJVKGUamfKzh7UG5SwkZWJpvLBiyEAVqLNT+LukKvb29tBGpu6iurkZYWBivQRRb9Pf3o7W1lffdhA1UHYBLWIQLarUaFy5cgFQqdVsA88KFC/Q2RQg0Gg1NznJXYaexsRE6nQ6rVq0S9DytVovq6moUFxe7bVvX1taGkZERQZJugJWkdPnyZaxYsWLeOgTXJFkIsCrsjI+P07RbZ2STp59+mtEPpibSenp63Io9ODiIyclJut/OpS7EpmwUHx/vtnsR4Dhbz0Y2YlO4AWav7kPN1rMlPplMRscsLS1FZmYmw06Moim7q+5j7yLEpSx08OBBFBcXIyEhge7rU/wGd2PPzMxAJpMxViBcxCp7kpe3tzf8/f09ykJzDYvFwktZCLDOg7OpyRQUFLitLNTY2IicnBz6Ts6lLsSlbDQb5p39bD0b2YhL4Qb4wUFIqHsRYP0sFy9ezHpHS09Pp2N+99138PPzc5A3o5h3ExMTgmM3NjYiNTWV7oRwKQtlZWXhgw8+cKhX5OTkuOVeBFg/c3umIxuxiovkFRkZCbVa7dZ1zzUWTBIYGBgASZIM4ws2sonZbMaePXvw9NNPO7xGZGSkW3cmuVxO26NT4FIX4lI2cpd519XVBZFIxJitd6boY69wA/ygoSBUWai/vx8Gg4GXqtHp06eRnJzMybwTGptiOtoWKrmUhRYvXsyqz+Dt7U3bqwsBJYDCR1mIi+QlEokQFhYGuVx+xUeJF0QSMBgM6OnpoSW7AW6yyb59+3DzzTdzmmgIZd7p9XoHwUkKXOpCXMpGQpl3VFFMSDGQTeEGsMquC1H3oeS2bZmOznDgwAHceeedrMeEMu8opqMzVSMuZSF7pKSkwGg0QqlU8ooNWFcB9kxHLmKVM5JXaGgodDqdYC/DucaCaBH29fXBz8+PMfnHRjb5/PPP8c033+CLL77gfK2AgAAsWrQIx44d41SusYVKpUJERATr+C+XuhCXshE1lsxX1WhgYAChoaGCJuC4FG7EYjFycnJQVVXF686uVqvh6+vLmUxtYTAYUF5eTrfg7EEx706fPs1LUYmiCNuvKihwKQtxxS4oKMCpU6cwOjrqsoc/NjaGmZkZh++Hi1jliuQVHR0NuVyOiIiIn6ayEEEQfyQIoo0giAaCIP5JEIQwK905AtsXx0Y2efXVV9HT04PCwkKsXr0aOp2OtbJLkiTtJejqn0Qicbmcs1cXAriVjcxmM6+43t7e8PHxETS16EzhhorN97r9/Px4xz5+/Djy8/Odtm0tFgvEYjHv6+YCl7KQMwj5DEUiEev3zUWsckXyIknyipOHZrsSqADwJEmSJoIgXgHwJID/mP3bEobExEQMDg4yvPXYyCYPPPAAY/lNFW5sMTU1BYVCgaKiIpfGmsAPxS9bvwOAXV3owQcfdKpsRC0fi4qKeI2YZmRkOLgXOYMzhRvKRWjt2rW8RE0oDQUu9yJbfPXVV5xbAcCanFpaWrBmzRpe1wFYNRR6e3sZqzUuZSFX10HZwPHVgjh16hTkcjmju8RFrEpOTnZK8lKr1cjMzPzpKguRJFlu879nAfzL7N6Oe/Dy8sKiRYvQ19fnUlnIFZqbm5GUlMQrAVCxMzMzHZh3bOpCUqkUd911F6eyUVNTExITE3nPmFPqPpSyEPWHxKXow6VwA1idfOLi4nirGlECnZS6D9cfsU6nQ1VVlYNtmi3a2toQGhrKOwEA1m7KuXPnkJCQ4FJZyGAw4Omnn4ZGo8G9996L3Nxc2vOBKuoKEYPJy8tDTU0Nkv7/9s48qqkzj/vfJwkEiCwCskjYDChBoa3aVQarorajte3M8Yydbmfennbao91tX22nU9uOZ+x0rOMZtTPVLqfzzrRTuoxOrRuCUKjW2qokLIKAgAFkS9lJCHneP+K9k0vuTe4Nq3A/5/ScCkl+eYD87nOf5/t8v3FxnFkJn7NQQEAAnn/+eSxduhQ+Pj4ckZfZbIZGo5FsaDLSjJhYiBDyXwD/ppTye1o7MRpiIUopfvzxR0ybNs1rowZvhTN2ux15eXlISkoStY7Ax3CEM/n5+dBqtV5nD3R2dqKwsNAr4UxRURHCwsIE/Qg80dvbi7y8PCxevFh042U4deoUpk2bJlkgxdDf34/jx48jIyOD94i0O7wVSDEwzkLXXXed5HGLYUTFQoSQHEKIkee/u50e8zIAGwDBuBlCyGOEkDOEkDPDcf9x8/rQ6XRobW31asuF2evX6/VsAxCK7xoq/mCuikwOojcwCUY+Pj6CQiOGoUInxlnIm/QigHu2nk9oZDQasXr1avbncPbsWU7tqqoqrzQGTG0mRUhI7GM2m7Fu3TosWrQI69atY49vp6WlSfZQcKa0tBQzZ87kNIChzkJ1dXVYvXo1Fi1ahMcff5z9GaempqKhocGr9CLAIUuPjIwclQYgFY9NgFKaRSmdx/PffgAghDwMYDWA+6mbTx+l9F1K6UJK6cLRMlYMCQlBSEiIV85CtbW1UCqVLlfyoc5CQuKPiIgIhIaGeqW8q62t5fjoCwmNAH6h0/Tp0xEdHe2Vu48YV6OtW7fiueeew7Fjx7Bx40Zs3fq/uMnAwEDExsZKTvEBXJWOQmKf3bt3IyMjA0VFRcjIyGDj0TUaDeLi4rwat9ls5lU6DnUW2rp1Kx599FEUFRUhODgYH3/8MQBHelFycrJkjQHgWH/p6+uTZG46mgx3d+AOOBYC11BKvbsUjDCzZs1CR0eHpCuyUIoQH+4cflJTU1FXVyfpqmiz2VBWVsbZbxcSGrkTOun1eslXJmb243wAhk9oRAhhlW1dXV0u24J6vR5tbW2Sm+9QpaOQ2OfIkSNYu3YtAGDt2rU4fPgw+xpMelFzc7Ok2gaDwUXpONRZiFKKoqIirFq1iq195MgR9vFJSUmwWCwwmUySajc3NyMhIUGSme1oMtwlyV0AAgEcI4ScI4T8bQTe07Dw9/eHVquVZDhaVlaGsLAwl0NHfM5C7sQfTK6elKtDeXk5QkNDXRbF+IRG7oRO/v7+knP1KisrodFoPC6Kvfbaa/jDH/6AhQsX4o033nDZ72fcfaSMm0/p6Iyz2Ke1tZUdc2RkJMdKjEkvkuLuI6R0HOosZDabERwczN4eRkdHo6mpiX28NwazPT09IISIPuY+Fgx3d8CzsmMc0Gq1qKysRGNjo8c9WOYo7erVq12+x+cs5En8odfrsX//fnz77bceF9kGBwdRXV3NXmmcGSo0OnXqlEehU1JSEsrLy1FYWOjRWchut6OystJFy8/HRx99hC1btmDVqlU4cOAAnn/+efz73//mPCY+Ph7l5eUoKCjwuDBLKXXrqCRF7MPUrqioQH5+vihnocrKSixevJizo8HnLMR3dzv07yk6OhoVFRU4ceKEKGchq9WKjIyMCeMlAEwSxeBQ7HY7FAqFqEUXm80GQgjv7QOfs5CQ+IPZ5nE+I+DpmKjdbodKpYLVahX80DJCo2+//ZYVOgFghU7OOge73c6en2DOrQtBKYVarcbAwIDbxwGOdZHXX38dAHDXXXfhhRdeEByPRqMRZW2mVqt5f+Z8Yp/w8HDWzOXKlSsuW2p2ux2Dg4MIDg4WlZvAN27GWSg3NxcWiwVdXV149dVX2VtLlUqFxsZG3lmYzWaDn5+fqOk9s2U8kZiUTaCurg6hoaGiJK2Ao7sbDAbceuut7NeEnIUCAgLcij+MRiMSEhJE6/mVSiUMBgPHFUcoxsz51oNP6MS4Gl1//fWiavv5+blNL2KIjIzEyZMncdttt6GwsJBX0lxRUYGQkBDRjkoBAQEwGAyYMWMGe1UUEvusWLEC2dnZ2LBhA7Kzs138IGtqauDv7y/aUyAoKAjnz5/npBfxOQvt2rULjz32GA4ePIi7774b2dnZWLFiBee1GFOUW2+9VdTVva+vD1VVVZg+ffqE8RmcOHOSEaKnpwdNTU2SnIVmz56Nzs5OzuKSkLOQO4cfs9mM5uZmSaYiOp0OVqsV9fX17NeuXLmCtWvXsrUzMzM9mpF2dnZyztaLIT4+HgqFAtXV1ezX+FyN3nrrLbz++uvIysrCm2++iT/96U+c1+nt7UVVVZUkd5/Y2Fj4+vpyPBQYsc+3337LCXdZv349CgoKsGjRIhQUFGD9+vXscxilo5TaUVFRCAoKEpUR8fLLL+Pdd9/FokWLYDabOXbkfIu6nvD394dCoZC8mDiaTDpnoeLiYiiVStHKN4bLly+jvLx8WO4++fn5mDlzpuRIritXruDcuXNYvny517UZp12pkVxM9NqKFSu8dhY6ffo0/Pz8JOc2mM1mnDx5EsuWLfPaYefcuXOw2+2sZl8sw4leYzAajejq6uLMIMVgs9lQX1+PBQsWSI6cE8uUdRZqa2tDT0+PW2ehZ555Brfccgt7pWFW05lwyZqaGq9q19fXw2azcVac+cRGfA4/jGjEm/QiwHGa0PlsvZDYiG/sYWFhCA8P9yrFB3AoHdva2tjmwyc2KikpwV133YVly5bh4YcfZrcbp0+fjqioKK/2+QGHk09DQwNbW2jchYWFWLlyJZYuXYqnn34aNpuN3cnxdty9vb2ora3l3PbxOQvxxdapVCoEBgZ67WI10kyaJsDkBzC3Ae6chX73u9+xjjfOklNvlXd2ux2lpaWYN2+ey5V8qNhIyOHHW+UdcwDG+Wy9O7ER39jT0tJw+fJldHZ2SqoNcJWOAL/Y6IUXXsBLL72E48eP484778Q777zDfm84yjuj0YikpCR2F4Zv3N9//z2eeeYZ7NmzB7m5udBqtcjOzgYg3UNh6LgZpSODUGQbX2xdWFgY2tvbvVYcjiSTpgk0NjZCoVBwVsXFxFg5463yrry8HEFBQaIXIgFXhx9GeSf1ylRVVQUfHx/O2XohsZEQ/v7+ktOLAMeimN1u9+hqVFVVxVp7/exnP8PXX3/Nfs/Pzw+zZ8+WrLzjSxHiG7dSqYRarWZnaJmZmWx9lUrllbNQa2sr2tvbObdeYiPbnN9raGio7Cw0UlgsFtTW1opyFgKAN998E1lZWXj11VdhsVg4ryVVeefO6lsoxgzgd/jR6/XsH5gYrFYrLly4wHsvLuRqJDR2xt3HWQzjDmZRLD093eM6xpw5c3D0qOPA6VdffYWGhgbO93U6nSTlHZ/SkWHouG+44QYMDAywBqMHDx7k1GdCQd3Zrg+Fz9XIXWSbUGxdUFAQrFar5CzDkWZSbBHW19dDo9FwTt8JxVht3rwZERERsFqtePHFF7Fnzx48++yz7PP8/f2RmJiI48ePi9J2m0wmxMbG8moS+MRGzBWRz+HHx8cHs2fPxvHjx0U5C125cgUzZswQ7WrkbuzOzkJDrcf4aGlpQWBgoCiBzNtvv41XXnkFO3bswIoVK1xOSTLKO7GuRm1tbfD19eVVOg4d94ULF7Bnzx5s2bIFVqsVmZmZLltz6enprC+DJ3FZR0cHBgYGXJSOQs5Cv/nNb9zG1kVERODSpUtsstV4MCmagI+Pj0sKsbOzEAA2xorJslOr1fjVr36Fv/3NVenc39+PkJAQUTsMfX19gmsIfGKjW265hXX4cY47Z+jt7RVd22KxuMxkhuLsasQcdhIae29vL4KCgkTVttls6Onp8fg4wKFkZA7eVFVV4fjx4y6P6evrg0ajEW1o8tNPP7GiMD6GjvvLL78E4NjBcd4SBRw/R41GIyqrQqlUoqmpyaU2n7PQrl27OFvV999/Px5++GHO6w0ODkKpVI6ru9CkaAIxMTFobGxEX18fu0gkFGPFKM8opTh8+LDLOfiOjg40NjaKPlufkJCAI0eOoLW1lXNVFBIbAcIOP0yC0eLFi0VtWyUmJiInJweNjY2clFshsZG7sTM++mLP1icmJuLEiRMu7j58MD8bu92OnTt34sEHH+R8nzFMvfXWW0UZbOh0Opw4cQI1NTWcmYPQuJn6FosFu3fvxlNPPcU+h1lYvemmm0Sv6RQVFaGyspITQSfkLOQuto5SipaWFuj1+mvXWWiioFKpkJiYiJqaGnYKL+Qs9MADD6C9vR2UUsydOxfbtm3jvJbBYOCsOHtiqLsPQ0tLCx555BEAjm5/zz33YMmSJQAg6PBjNBoRHx8vet+amUYPzdXjczVavnw51q5dKzh2o9HocrbeU+309HScOXMGMTExrMaAz9Wop6cHH374IQDg5z//OWusylBSUoLw8HBJDjvp6ek4deoU4uLi2NsLoXG/8cYbyMnJgd1ux0MPPYSMjAz2dSoqKjBt2jRJi7ppaWkoLCxEXFwc5++Ez1nolVdeQWlpKQgh0Gq1HIcls9kseuY1mkwasRClFOfOnYOfn59klxgGk8mEkpISZGVlSe7MJ06cQFxcnKj7aT6am5vxww8/YMWKFZLvDZlY7KHhqGIZjmjn9OnTCAgI8Nrdp7OzE998841Xoh1vRUoMjKuRWE9HZ4qLi2G1WrFwoSg9jguDg4Oora3F/PnzPZ7z8IYpKRZinIWYK51UmHBJZwkon9iIUopt27YhIyMDixcvxnvvvQfAcXUoLy8XdSCHD2a1m2kAfEIjIYefefPm4eLFi16lFwGOP2jmbL2Q4EZo3FJzGoZSUlLCpggJ1f7mm2+wcuVKLF++HPfccw8r6EpPT/c6vQhw9XQUihEDHPqOmJgYducmJSUFV65c4RxrlkJLSwtiYmJGpQFIZVLcDjAEBQUhLCwMbW1tolatnWHO1jP31ozYKC8vD/7+/vjtb3/Lio0aGhpQUFAAhULBCk3CwsIQERGB0tJSwQhtIaqrq6FUKl12I7KzszmLVYzDz9KlS3H8+HFs3boVn332GYKDgxETEwOj0Sj5yjRU6cgIbjQaDQYGBnDvvfdiyZIluHjxIu+4NRoN4uPjWcdeKTBKR+bgj1DtzZs344MPPkBycjI+/PBD7Ny5E3/5y1/g5+cHnU4Hg8GA2267TVJtRumYlZXFfo0R++zdu5d1/wEcM8SCggLObgSTXmQwGHD77bdLqt3f3w+LxSKYmzDWTJqZAENiYiK6urokXZH5wiUBfrHRRx99hGeffZadLTg3m7lz58JkMklS3jEHYMScOnTn8KPX69Hc3CwpV49P6SgkNHI37pSUFHR0dEhy9+FTOgrVdjduRt8gNep7qNLRndhny5YtePnll11W8HU6HWw2m+Rg0ZaWFiQmJnqdxDzSTLomwGQCSnEWMhqNiImJ4dwXComNLl26hAMHDuDOO+/EAw88wNluYjQGUpR3ZWVliIiIcFkU4xMauXP4UavVmDNnjmRXIz6lI5/QyN24lUol9Hq9pNp8Skeh2n/+85/x4IMPYsGCBfj888+xYcMG9vHeuPvwKR2FxD5Hjx5FdHS04OnM9PR0lJWVuWxRC9HV1QWVSiVpIXK0mVS3AwzMlqEYBZrVakVzc7PLUV0hsZHVaoVarcahQ4fw9ddf4/nnn2f3oAHHlWn//v3Iz8/3eEKMWRziC+bgExodPHjQrcNPYmIiysrKkJubK8pZqKamhjeNiE9o5GncjOHn0aNHPS7MUkpRVVXFmxDEV3vv3r34xz/+gfnz5+OdP6RwKwAAFcRJREFUd97Ba6+9xnFgjomJYWuLWWmvrq52WfzlE/ts374d3333HZtRwAcT7V5cXCwqN8FqtWLevHnjnjrkzKRsAkqlEunp6aLELDabDVarlY3gYhASG0VHR7N2YHfeeSeee+45zutZLBYolUpERUV5dJqx2+1oaWnh6BsY+IRGnhx+bDYb7HY7oqKiPG5xMnvU3d3dgg5MzoIbT+O22Wyw2Wwuh2rc1e7t7RX80DK18/LyUFpayopw1qxZ4xIiY7fbYbPZEBUVJcperLW11eWgFp/YZ/v27airq2MvEI2NjVi5ciUOHjzI+cBHREQgMjJSVANidAwTiUnZBADH1FxKkEZtbS0nWlxIbBQYGIiioiKsW7cOJ0+edNkSNBgMSExMFL1dp1AoUFxczFlcEhIaeXL4KS0thVarFW1q4uvrC6PRiIiICPaqKCS4ueOOO9yOu7y8HBEREaIdlfz9/dmsPk+1Ozs7UVVVBZ1Oh4KCAhe/hsrKSgQFBYkOAgkMDMTp06cxc+ZMtvHziX3S0tLw6aefss+7+eabcejQIc5ibXt7O4KCgiR7SEwkJm0TkEJkZCRMJhO6urrYdQEhsVF/fz82bNiAvXv3IiAgAG+99Rb7Ou3t7Whvb+esOHsiPj4eNTU1HOWdkNBIo9Hg97//Petp5+zww5yt92QV5oxWq0VVVRUnV09IcHPTTTcJjru7uxt1dXWcGDZPREdHo7q6mqO8E6r91ltv4bHHHgMhBCEhIdi+fTv7Os5KR7EwwqQLFy5w9A18Yh93MPJlb1OIJgqTRiw0XDo6Olh/QG/v106cOIH4+HhRh3+caW1txZkzZyTHnzlTWFiIiIgI1lhELGazGUVFRVixYoXXPvinTp1CYGCgJGszYHjxZwxnzpyBSqUS7avIMJz4M4ampiYEBQWJilMfa6SIheSZwFWCg4MRGhrKcQ6WwqVLl2C329mjqe+++y4+/vhjEEKQkpKCt99+G/fddx8rqmlra8P111+P999/H+Hh4Wx6kTfKO5PJhN7eXs4f480334xp06ZBoVBApVLh0KFDKCkpwaZNm9Db2wutVotdu3Zh+vTpmDlzJoxGo2SLLsChdOzo6MCNN94IwHFl/uUvfwmLxYLBwUGsWrUKGzduZINYh45dq9WipKTEK+Ud4+nIGHUAjma+ceNGXLhwAYQQbN++Hbm5uTh69CgIIQgPD8eOHTsQFRXF7uRItQcDHGs//f39om9/JjIjskVICNlICKGEEGkKnQlGYmKi5PQi4H8HYNLT00EIEXQ1+vLLL1mHmQULFnA8/71V3vEpHRmGuhoJOfzMnTsXTU1NXrncFBcXQ6/Xe3Q1Ehp7SkoKmpubvVLeFRcXY86cORypM5+7zxNPPIGcnBwcO3YMWVlZ2LFjB4D/Gcx6c56/paUFCQkJE2avfzgMuwkQQmIBLAcgTTExAfHz80NsbKzkSKuysjKEhoZyBDTuXI26u7tRVFSEO+64g/2as/JOChUVFRylozuEHH7UajWSkpJY4w2xVFdXQ6VScZSOnlyNho7d19eXjXaXAqN0dL71EhL8OOs/ent72fejUqmQmpoKo9EoKQugu7t7wqUIDYeRmAnsAPAigPH1SBohYmJi2A+uGJhFMef7YXeuRoDjSOmiRYtcDq1IVd719/cLWn3ziY3cOfwkJSXBarWKdvdxp3QUcjUC+McuVXlns9l4PR3dufts27YNCxcuxJdffsnZWo2NjYVKpRJtMEspRWtrK5KSkiZUitBwGNaaACFkDQATpfS8p8U0QshjAB4DMGHSWPlQqVSYNWsWKisrRS2UXbp0CQkJCRxxjpDQiDE02b9/P8e/nkGpVCI5ORl5eXkez+gDjn3rmTNn8p6A4xMbuXP4USgU0Ov1yM/PF3USsrm5GaGhobzrJ3yCH8a7QGjsaWlpyMnJEe0sFBAQwKt05HP3efHFF7Fp0yZs2rQJf/3rX/HBBx9g48aN7PPS09Nx8uRJqNVqj4vCTNLReB//HUk8NgFCSA4AvnnPywBeArCC53suUErfBfAu4NgdkPAex5wZM2bA19dX1BRx2rRpLqfY3Lkatbe34+zZs9i3bx/v63V1dbF71p5QqVSCawh8YqPHH3/crcNPR0eH6NpqtdqjS6+z2IhJDxYae2dnJ8LDw0XV9vf3l+Tu48y9996Lhx56iNMECCGYO3eu6FV+qceOJzoemwCllHfTmxCSBiARADML0AL4kRByE6VUnFvlBIXZjxZDSEgIfvjhB47yTkhoBDim4VlZWbyS4s7OTphMJtFbZlqtFnl5eaivr+cInYTERu4cfhjDVLFbZnFxcThx4gSqq6s5MwchwY+7sVutVlRUVOC2224TdYWNi4tDR0cHLl68yNkSFXL3cX6PR48e5cw27HY7zGYzrrvuOq+3Cq91vL4doJQaALDaSULIJQALKaXSTdyvYRQKBZKSklBWVgaNRgNCiKDQCAAOHDjAidFyxmAwQKfTid4zVygUmDdvHhuUymgMhMRG+/btE3T4MRgMgoapQqSlpeG7776DVqtlb52EBD/uxl5aWoro6GhJU+zrrrsORUVFiI+P5+wO8Al+XnjhBVRVVUGhUCAmJobjqNTa2oqIiIgp2wCAERQLSWkCE1EsNFxKSkpAKRVlVslHU1MTzp8/j6ysLMnOQidPnkRwcLCkDERnWltbcfr0aSxfvlzylteZM2fg6+vrtbtPR0cHioqKvHI1+vHHH9l0aG+wWq1oaGjAwoULvRZKTVTGxVmIUpow1WYBzjAaA7FHSp1hztbPmzePbQB8rkZCDjtpaWmoqamRnF7EwOz1Mw2Az2HHbDZj3bp1WLRoEdatW8f658+dO9fr9CLgf56OTAPgq/3GG28gMzMTWVlZeOSRR1g9w7x589DQ0CDJQ8GZ5uZmxMfHT7oGIJXJsccxAQgICMDMmTMlawwAxyKdWq1mnWuExEabN2/Grl27cOzYMdxzzz3YuXMnAMfiZHx8vOS9dgBsHp7zfjuf4Gb37t3IyMhAUVERMjIysHv3bgCORTrG3UcqJpMJ/f39nAU5vtqZmZnIzc1FTk4OZs2axS72+fr6Yvbs2ZK1FYAjvZoQIkpfMdmRm8AIEhsbC6vVKsnrr7+/HxUVFaJcjdw57MyZMwdtbW2ScvWclY4MQoKbI0eOYO3atQCAtWvX4vDhw+xzkpKS0NPTI8ndh1E6OqcICdVevHgxu94xf/58Th0mvejy5cuiawOOdROdTjdp9vqHg/wTGEEY63Mps4HS0lIXq28hsZE7hx0fHx/W+lwsfEpHIcFNa2sr23QiIyM5Ml/Gdl2Kuw+f0tGd2Ifhk08+Ya3bgf8tjhqNRtG3Yu3t7QgMDPR6/WayIR8gGmEiIyPR2NiI+vp6j8KTgYEBNDU1cQ7AAMJio0OHDrl12ImPj8e5c+dw+PBhj3vZdrsddXV1Lq5GQoIbT8TExMBgMODIkSMICgpy+1hKKS5duuSSveBO7AMAO3fuhEqlwi9+8QvO86KiohAYGAiDwSDKYHZgYEDyqcPJjNwERhhGeCJmkc5ut4NSCpvNxlkZ5xMbff/99x4ddvr7+0EIQXJyskdrM8ChS/jpp584akchwU14eDibpnPlyhUXpaDVaoXNZkNycrKo7bauri6YzWYXX0chsQ9zKOnTTz91aa6UUkRGRiIhIcFjAwIcMzapGQeTGbkJjAK+vr6iV5xTU1NRXl7O+aMUEht99dVXbh12jEYj4uLiRElvAcdUeqi7j5DgZvbs2cjOzsaGDRuQnZ2NlStXcl6rrKwMUVFRoh2VfHx8cPbsWcTExLA7IkK18/LysGfPHnz++ee8GgrmVmUiy9EnMnITGGdCQ0MRGBiI9vZ29h5VSGwUHR0t6LDDnK0fapjqDsbdp6KigpNLyCe4sdvtrOw4JiYGf//739nHOysdxcIYdJaXl3MOX/HVXrVqFSwWC9atW8f+fJg4r4GBAXR3d7tkSsqIR3YWmgD09PTg7NmziI+P9zqeOj8/H1qtVvQsgKGrqwv5+fmCUmYxeBuD1t3djYKCAtEBrHyYTCZERUVxZNMyUzSG7FqGWSWXsr3nzNCz9XxCo8LCQqxcuRJLly7F008/zRqnBAYGQqvVerXXDjiUjj09PZy9fj7Bz3//+18sWbIEWq2W9S2YNm0aYmNjUVJS4lVt5oyEmENHMsLITWCCEBcXx8ZTScFms8FoNLLOQnxCo//85z945plnsGfPHuTm5kKr1SI7O5t9jblz56K5uZnN2RMLX4oQwC/4SUlJwd69e12iyvR6Pdrb271qgM3NzdDpdF7PnmQcyE1gguDj44OEhARJyUmAY789JCSE44M/VGjk7+8PtVrN3ipkZmayrkJMbW/cfYYqHQFhwU9ycjLvUV2VSoWUlBQUFxdLcvcxm83QaDSSMydlXJGbwAQiMjISSqVSdMouc/zX2d2HT2i0Zs0aDAwMsNPwgwcPclyFAIds2Gazoba2VlRtIaWjGMHPUBISEqBQKETXZqy+pa5/yPAj7w5MIBQKBXQ6HYxGI3tAxx319fWIi4vj7MvzCY2++OIL7NmzB1u2bIHVakVmZqbLFFqhUCA1NRU5OTmiXI3a2toQGRnpkqbjSfAjRFpaGk6fPi3Kcn1wcBCRkZFT+vjvSCI3gQlGSEgIrr/+elES2IiICJcrujtXIyY7MD8/nxMoytDa2orY2FhRaTphYWEwmUxeufsIccMNN4i+uk82d5/xRG4CExCxV7jg4GB0dnbCbDazhhxCQiPGVchisWD37t146qmnOK/FGKbefvvtorbroqOj0d7ezkkvAoQFP+6w2Wzo6OjAwoULvd6mlPEeeU3gGken0+Gnn35iF9WchUbLli2D3W7H/fffj3feeQeLFy9GVlYWli9f7hLbZTAYXAxTPZGeno6KigqXU5OM4CcrKwslJSV48skncejQISxYsAA//PADHnroIfz6179mH9/c3IzY2Fi5AYwTslhoEnDx4kWXo8VSaG5uxtmzZ71yNTp79iwopV6lFwFAX18fWlpacOONN8pbfSOILBaaYsTFxaGvrw9Wq1Xyc+12u0uK0L59+7B06VIsWbIEe/fuBQBBZ6HU1FSv04sAx7n+WbNmyQ1gHJGbwCTA19cXCQkJXrka1dTUwMfHhz18U15ejn/96184ePAgjh07hpycHFRXVws6C6nVaiQnJ0tOLwIcOxl+fn6YMWOG5OfKjBxyE5gkMM5DPT09op/DpAg57/VXVlZi/vz58Pf3h0qlwi233ILDhw+7dRbS6XSS0osAxwykvb0dOp3O6xRomZFBbgKTBMb6vKWlBWLXefisvlNSUnDq1Cm0t7ejr68Pubm5aGhocOsspFAokJaWJinTr7W1FTNmzJC3+iYA8hbhJGL69OkICgpCXV2dR+88m80Gk8mEpUuXcr6enJyM9evX47777oNGo0Fqaqqo+3VGvFNcXCwq2n1wcBB6vd7j42RGn2E3AULIkwA2ALABOEgpdS8NkxlV9Hq9KFcjSil8fHxgsVhcjDruu+8+Vvv/xz/+EdHR0R6dhWw2GyIjI5GSkiIqPMXHx0dyzoDM6DDcQNIlAO4GkE4ptRBCIjw9R2Z0USqVoqfYer0e58+fR1BQEGfmwAiLTCYTDh06hAMHDqC+vt6ts1BLSwvi4uI4B5lkrg2GOxN4AsA2SqkFACil0penZcaNwMBAzJgxg43iYnj00UdhNpuhUqmwdetWhISEYP369YLOQv39/RgYGIBWqx2PYcgMk2GJhQgh5wDsB3AHgH4AGyml3ws81jmafIHYE2Myo4vFYsGZM2eg1WolR5Ax1NXVITEx0WuxkszII0UsNNxochWA6QBuAXAjgE8JIbMoT2e5lqLJpxJqtRrx8fFobGzk+AKIpbOzE2q1Wr4NuIbxOpocAAghTwD44uqH/jQhxA4gHIA0ZwyZcSU6Ohomkwm9vb0ICAgQ/TxKKdra2pCWlibv9V/DDFcn8B8ASwGAEDIbgC+AKRtKeq2iVCpZjYEU2traEBYWJsrrX2biMtwm8D6AWYQQI4BPADzMdysgM/EJCwuDRqMR7TM4MDCArq4uJCQkjO4bkxl1hrU7QCm1AnhghN6LzDij0+lw7tw5dHd3e3zs4OCgfPx3kiArBmVYNBoNFixYIDrYU8r6gczERW4CMhzkK/vUQz5AJCMzxZGbgIzMFEduAjIyUxy5CcjITHHkJiAjM8WRm4CMzBRHbgIyMlMcuQnIyExxxiV8hBDSAsBbQ4FwjO8hpfGsL9eWa4slnlIqyst9XJrAcCCEnBFrljDZ6su15dqjgXw7ICMzxZGbgIzMFOdabALvTuH6cm259ohzza0JyMjIjCzX4kxARkZmBLlmmwAh5ElCyAVCSAkh5E/jUH8jIYQSQsLHsOZbhJByQkgxIeRLQkjIGNS84+rP+SIhZNNo13OqG0sIySOElF39HT89VrWd3oOSEHKWEPLVGNcNIYR8dvV3XUYIuXU0612TTWBI8tFcAH8e4/qxAJYDqBvLugCOAZhHKU0HUAFg82gWI4QoAewGcCeAVAD3EUJSR7OmEzYAz1NK9XBY2q8fw9oMTwMoG+OaALATwGFKaQqA60b7PVyTTQDjn3y0A8CLAMZ0QYVSepRSarv6z1MARjvy5yYAFyml1Vf9JD+Bo/mOOpTSRkrpj1f/vwuOD4L0YAQvIYRoAawCsG+sal6tGwQgE8B7gMPHk1L602jWvFabwGwAPyOEfEcIySeE3DhWhQkhawCYKKXnx6qmAP8HwKFRrhEDoN7p35cxhh9EBkJIAoAbAHw3hmX/AkejF5e1PnLMgiO344OrtyL7CCGa0Sw4YT0GRyr5aBRqvwRgxUjUkVqbUrr/6mNehmO6/M/Reh/M2+H52pjOfggh0wB8DuAZSmnnGNVcDaCZUvoDIeT2sajphArAfABPUkq/I4TsBLAJwCujWXBCMp7JR0K1CSFpABIBnL+auKMF8CMh5CZKadNo1nZ6Dw8DWA1g2RhkPFwGEOv0by2AhlGuyUII8YGjAfyTUvrFWNUFsAjAGkLIzwH4AQgihPw/SulY2OtfBnCZUsrMej6DowmMGtfq7cC4JB9RSg2U0ghKaQKlNAGOX9j8kWoAniCE3AHg/wJYQyntHYOS3wNIJoQkEkJ8AawDcGAM6oI4uux7AMoopW+PRU0GSulmSqn26u94HYDcMWoAuPq3VE8ImXP1S8sAlI5mzQk7E/DA+wDev5p8ZMXUST7aBUAN4NjVmcgpSunjo1WMUmojhGwAcASAEsD7lNKS0ao3hEUAHgRguJp+DQAvUUq/HqP648mTAP55tfFWA/jNaBaTFYMyMlOca/V2QEZGZoSQm4CMzBRHbgIyMlMcuQnIyExx5CYgIzPFkZuAjMwUR24CMjJTHLkJyMhMcf4/fxe2td+01QUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "g = HexWaterMaze(6)\n",
    "g.plot_grid()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "```\n",
    "agent = CombinedAgent(g, init_sr='rw', lesion_dls=False, lesion_hpc=False)\n",
    "agent_results = []\n",
    "agent_ets = []\n",
    "session = 0\n",
    "res['session'] = session\n",
    "\n",
    "for ep in tqdm(range(44)):\n",
    "    agent.env.starting_state = np.random.choice(agent.env.grid.edge_states)\n",
    "    #if ep == 5: \n",
    "    #    g.set_platform_state(52)\n",
    "    if ep == 4: \n",
    "        g.set_platform_state(possible_platform_states[0])\n",
    "    if ep == 8: \n",
    "        g.set_platform_state(possible_platform_states[3])\n",
    "    if ep == 12: \n",
    "        g.set_platform_state(possible_platform_states[6])\n",
    "    if ep == 16:\n",
    "        g.set_platform_state(possible_platform_states[3])\n",
    "    if ep == 20: \n",
    "        g.set_platform_state(possible_platform_states[4])\n",
    "    if ep == 24: \n",
    "        g.set_platform_state(possible_platform_states[5])\n",
    "    if ep == 18: \n",
    "        g.set_platform_state(possible_platform_states[6])\n",
    "    if ep == 32:\n",
    "        g.set_platform_state(possible_platform_states[7])\n",
    "    if ep == 36: \n",
    "        g.set_platform_state(possible_platform_states[0])\n",
    "    if ep == 40: \n",
    "        g.set_platform_state(possible_platform_states[3])\n",
    "\n",
    "    res = agent.one_episode(random_policy=False)\n",
    "    res['trial'] = ep\n",
    "    res['escape time'] = res.time.max()\n",
    "    agent_results.append(res)\n",
    "    agent_ets.append(res.time.max())\n",
    "    \n",
    "    if ep % 4 == 0:\n",
    "        session += 1\n",
    "\n",
    "\n",
    "df = pd.concat(agent_results)\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ba3f0037f8d444b4924ada8b33f448b6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=20), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=11), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "all_results = []\n",
    "\n",
    "possible_platform_states = [48, 45, 42, 39, 60, 57, 54, 57]\n",
    "\n",
    "\n",
    "for n_agent in tqdm(range(20)):\n",
    "    \n",
    "    #inv_temp = 5\n",
    "    #possible_platform_states = [192, 185, 181, 174, 216, 210, 203, 197]  # for the r = 10 case\n",
    "    \n",
    "    #random.seed(n_agent)\n",
    "    random.shuffle(possible_platform_states)\n",
    "    g.set_platform_state(possible_platform_states[6]) \n",
    "\n",
    "\n",
    "    agent = CombinedAgent(g, init_sr='rw', lesion_dls=False, lesion_hpc=True, eta=eta,\n",
    "                         learning_rate=learning_rate, inv_temp=inv_temp)\n",
    "    agent.DLS.eta = .1\n",
    "    agent_results = []\n",
    "    agent_ets = []\n",
    "    session = 0\n",
    "\n",
    "    total_trial_count = 0\n",
    "\n",
    "    for ses in tqdm(range(11), leave=False):\n",
    "        for trial in tqdm(range(4),leave=False):\n",
    "            if trial == 0: \n",
    "                g.set_platform_state(possible_platform_states[ses % len(possible_platform_states)])\n",
    "            res = agent.one_episode(random_policy=False)\n",
    "            res['trial'] = trial\n",
    "            res['escape time'] = res.time.max()\n",
    "            res['session'] = ses\n",
    "            res['total trial'] = total_trial_count\n",
    "            agent_results.append(res)\n",
    "            agent_ets.append(res.time.max())\n",
    "\n",
    "            total_trial_count += 1\n",
    "            \n",
    "        #inv_temp += 1\n",
    "    agent_df = pd.concat(agent_results)\n",
    "    agent_df['agent'] = n_agent\n",
    "    agent_df['total time']= np.arange(len(agent_df))\n",
    "\n",
    "    all_results.append(agent_df)\n",
    "\n",
    "df = pd.concat(all_results)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>DLS reliability</th>\n",
       "      <th>HPC reliability</th>\n",
       "      <th>M_hat</th>\n",
       "      <th>P(SR)</th>\n",
       "      <th>RPE</th>\n",
       "      <th>R_hat</th>\n",
       "      <th>SPE</th>\n",
       "      <th>alpha</th>\n",
       "      <th>beta</th>\n",
       "      <th>choice</th>\n",
       "      <th>reward</th>\n",
       "      <th>state</th>\n",
       "      <th>time</th>\n",
       "      <th>platform</th>\n",
       "      <th>trial</th>\n",
       "      <th>escape time</th>\n",
       "      <th>session</th>\n",
       "      <th>total trial</th>\n",
       "      <th>agent</th>\n",
       "      <th>total time</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5544961667901593, 0.5893681385311593, 0.58...</td>\n",
       "      <td>0.900000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>0</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.838377</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[0.005403564814442152, 0.9020770753513905, -0....</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.815209</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.3055120278127675, 0.01005920312884312, -0....</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.806498</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.09748960686700103, -0.25572224121976794, -...</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.803223</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.07362054018453487, -0.13603059410435517, -...</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>41.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   DLS reliability  HPC reliability  \\\n",
       "0              0.0              0.8   \n",
       "1              0.0              0.8   \n",
       "2              0.0              0.8   \n",
       "3              0.0              0.8   \n",
       "4              0.0              0.8   \n",
       "\n",
       "                                               M_hat     P(SR)  RPE  \\\n",
       "0  [[1.5544961667901593, 0.5893681385311593, 0.58...  0.900000  0.0   \n",
       "1  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.838377  0.0   \n",
       "2  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.815209  0.0   \n",
       "3  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.806498  0.0   \n",
       "4  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.803223  0.0   \n",
       "\n",
       "                                               R_hat  \\\n",
       "0  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "1  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "2  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "3  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "4  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "\n",
       "                                                 SPE  alpha  beta choice  \\\n",
       "0                                                  0    0.5  0.25   None   \n",
       "1  [0.005403564814442152, 0.9020770753513905, -0....    0.5  0.25   None   \n",
       "2  [-0.3055120278127675, 0.01005920312884312, -0....    0.5  0.25   None   \n",
       "3  [-0.09748960686700103, -0.25572224121976794, -...    0.5  0.25   None   \n",
       "4  [-0.07362054018453487, -0.13603059410435517, -...    0.5  0.25   None   \n",
       "\n",
       "   reward  state  time  platform  trial  escape time  session  total trial  \\\n",
       "0     0.0    0.0   0.0       NaN      0         49.0        0            0   \n",
       "1     0.0    1.0   1.0      45.0      0         49.0        0            0   \n",
       "2     0.0    8.0   2.0      45.0      0         49.0        0            0   \n",
       "3     0.0   22.0   3.0      45.0      0         49.0        0            0   \n",
       "4     0.0   41.0   4.0      45.0      0         49.0        0            0   \n",
       "\n",
       "   agent  total time  \n",
       "0      0           0  \n",
       "1      0           1  \n",
       "2      0           2  \n",
       "3      0           3  \n",
       "4      0           4  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1a2349f1d0>"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAELCAYAAADDZxFQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXl4ZGd95/t5a99U2rduqVu9t7ttvNB4gYABg1lCMMwFstwkPAxPnEm4JBkmC8m9ydwJM5lMbp4hYbISmAyZMCRkIXjYjbExBmxo22277W733tp3qfa93vvHOW+pWl3LKalKrVN6P8+jp6VSSTpqnVO/89u+XyGlRKPRaDSa9Thu9AFoNBqNZnuiA4RGo9FoKqIDhEaj0WgqogOERqPRaCqiA4RGo9FoKqIDhEaj0Wgq0tIAIYToEkL8oxDirBDijBDiHiFEjxDiYSHEefPfbvO5QgjxCSHEBSHE80KIO1p5bBqNRqOpTasziD8GvialPArcCpwBPgo8IqU8BDxifgzwNuCQ+fYg8OctPjaNRqPR1EC0alFOCBEGngP2y7IfIoR4GXi9lHJGCDEMPCalPCKE+Evz/c+tf15LDlCj0Wg0NWllBrEfWAD+WgjxrBDiU0KIIDCoXvTNfwfM5+8GJsq+ftJ8TKPRaDQ3AFeLv/cdwIellE8JIf6YtXJSJUSFx65Lb4QQD2KUoAgGg688evRoM45Vo9FodgxPP/30opSyv97zWhkgJoFJKeVT5sf/iBEg5oQQw2Ulpvmy54+Wff0IML3+m0opPwl8EuDEiRPy5MmTrTp+jUajaUuEEFetPK9lJSYp5SwwIYQ4Yj50H/AS8BDwfvOx9wNfNN9/CPhZc5rpbiCi+w8ajUZz42hlBgHwYeCzQggPcAn4AEZQ+rwQ4oPAOPBe87lfAd4OXACS5nM1Go1Gc4NoaYCQUp4CTlT41H0VniuBD7XyeDQajUZjHb1JrdFoNJqK6ACh0Wg0moroAKHRaDSaiugAodFoNJqK6ACh0Wg0mors2AAxuZIkkcnf6MPQaDSabUur9yC2LUvxLFJC0Ltj/ws0Go2mJjs2g5BS0iIhW41Go2kLdmSA+PLzM/z7h14kmy/c6EPRaDSabcuODBAzkRTPTUZIZHWA0Gg0mmrsyACh+g7JrG5SazQaTTV2ZIAIeJwAxNI6QGg0Gk01dmSACHqMDCKeyd3gI9FoNJrty44MEAGvkUEkMroHodFoNNXYkQFCZRC6Sa3RaDTV2ZkBwswgUrpJrdFoNFXZkQHCb2YQqVzxBh+JRqPRbF92ZIAImlNMaV1i0mg0mqrsyAARMDOItM4gNBqNpio7MkB4XA5cDkFaS21oNBpNVXZkgABjWS6d0wFCo9FoqrGDA4SLTK6I1JKuGo1GU5EdHCCcpPMFijo+aDQaTUV2bIDwe5xkckWKOoPQaDSaiuzYABH0ukjnCxR0CmFbktk8sbTW09JoWsXODRBmk1onEPYlns6zmtQBQqNpFTs3QHhdpHWJydbkC5JcQe+yaDStYucGCI9ZYtIBwpYUipLPn5wgpbfhNQ0ytZqiqEvLlti5AcJrjrnqG1Bb8sJUhD965Dw/vLJ8ow9FYzOWYhmyOvO0REsDhBDiihDiBSHEKSHESfOxHiHEw0KI8+a/3ebjQgjxCSHEBSHE80KIO1p5bGrMNVvQd6B2JG66ASYyWpFXY51nxlf49rkF3Xu0yFZkEG+QUt4mpTxhfvxR4BEp5SHgEfNjgLcBh8y3B4E/b+VBBbxOpNSmQXZF+YkndYlJ0wCfevwSn/n+Fd17tMiNKDE9AHzGfP8zwLvKHv8bafAk0CWEGG7VQSjToJi2HbUlKjDEdQahaYBYJk86V9S9R4u0OkBI4BtCiKeFEA+ajw1KKWcAzH8HzMd3AxNlXztpPnYNQogHhRAnhRAnFxYWNnxgAVPyO5bSAcKOqAChMwhNI8TSeWO8XbcgLOFq8fd/jZRyWggxADwshDhb47miwmPXhXkp5SeBTwKcOHFiw7cBQa/xq0fT+gXGjqgSUyavr3SNdeKZPPmiJJ7J0Rlw3+jD2fa0NIOQUk6b/84DXwDuBOZU6cj8d958+iQwWvblI8B0q46tlEGks636EZoWojIHrciraQRVkozoyoElWhYghBBBIUSHeh+4HzgNPAS833za+4Evmu8/BPysOc10NxBRpahWoDKIWFrXsO1IoiyD0Iq8GqskzOs9mtLXvRVaWWIaBL4ghFA/539JKb8mhPgh8HkhxAeBceC95vO/ArwduAAkgQ+08Njwu03bUe0qZ0tSZRlEUYKzUoFSoylDSlnKIKJaw8sSLQsQUspLwK0VHl8C7qvwuAQ+1KrjWY/KIFQtW2Mv1P5DJm/IpTgrtrA0mjWS2UKpqakDhDV27ia12YNI6QzClqgeRCZf0DPtGkuUj0Tr0rI1dmyACJgZhG5y2hOVQaRzRb0Vq7FEeVDQGl7W2LEBYq0HoU8UO1KeQWhPD40VyjOIZE5nEFbYsQHC6RD43A7dpLYpCRUgtGS7xiJxnUE0zI4NEAABj4tMXp8odiRlDhdoX3GNVeJlsjq692iNHR0g/G6nWcPWrzB2I1mWQeS1dLPGAuU9iIwuLVtiRweIoNdpTsHc6CPRNIoqEeSLUl/sGkuU9yB079EaOzpABDzadtSOSClJ5gp4nMbpG9WKrhoLqB5Eh8+lS0wW2eEBwkk6p6dg7Ea2UKRQlHT6DbG1hBZc1Fggnsnjdgo6/W5D0VXfGNZlRweIoNdlnig3+kg0jaDKS0qNM6oFFzUWiGfy+N1Ow48+p0vLVtABIq9LTHZDjbiqDEJvxWqsEE/n8XucBL26cmCVHR0gQh4nmVxBu0vZDDXi2qUChO5BaCwQTeeMDMJr9CD0jWF9dnSACHiNJnWhoE8UO6F8xFWJKaEDhMYC8YyRQYS8qsSkr/t67OwA4XGSLRRJ62U5W6F2IFQGkdETKRoLxNN5Am5XWYC40Ue0/dnRASLoMQT74rqGbSuURHtP0GN83Ma6OqmsnrZpFqUMwmdUDvSCZX12dIAIeA3BPh0g7IXKIPpDXqC9TZ8uL8avWfDSbJz1Jaas9jOvy44OECqDiOgxSVuhMog+M0C0c4kpls6T1AGiKZTGXL0uJOjAa4EdHSACpmlQTC9a2QqVQfR1eBDQ1j2kbKHISlK7n22WTL5AriCNMdfSda8DRD12dIBQtqMxbT9oK1SACPs9+D3Ots0g/urxi/z2v5xmOZG50Ydie1QZWWUQoG1HrbCjA4TfvJPQqaa9SGbzOAT43Q5Tkbc9M4iXZmJcWUoyHUm37e+4VahrPOBxEjBLy9GUDhD12NEBQvUg2rnJ2Y4kMgV8bidup8PIIPLtKdmu7nDPz8W1wc0mUeWkgLlJDRBN6RvDeuzoAKF6EGozV2MPUtkCXpcDl8NBwNO+ku0x8wXs4kJcl0E3icoggl5XqcRUbiCkqcyODhDqRNHSv/YikcnjcztxOkVbS7bHzBewC/NxlhJ60m4zlKS+va5S5UBf9/XZ0QFCZRC6vmsvEtk8XpcDh4Cgx2najrZfgFAvaleXk8xFMxTbMU3aIlQG0Rlwl0pMSV05qMuODhBelwOnEDpA2IxU1uhBOISRQWRyxbaUbI9n8gx0eJESLs7HSOrzdMMoQceeoKes96j/P+uxowOEEKLU5NTYh0S2gNftMAJEm0o3SymJpfPcsrsTAVxYiOuFuU2gsrGwz10qLevhlPrs6AABxqirvpOwF8lsHp/LaZSYvC4ybejpkckXyRclPSEPI91+LswnWEnqPsRGiWdyOIRhN+pxOXA5BCl93ddlxweIoMdJOteeY5LtSrI8g3C3ZwZRGst0Ozm+q5ML83EWY3phbqMosyC36WMe0DeGlmh5gBBCOIUQzwohvmR+vE8I8ZQQ4rwQ4u+FEB7zca/58QXz82OtPjbAmIJp0zHJdiWVLRgZhEMYku35YtsJr6mx1qDHxavGuknlClxaTJBpY1mRVhIzdZjcLuMlT9kNa2qzFRnELwNnyj7+L8DHpZSHgBXgg+bjHwRWpJQHgY+bz2s57VrDbmdUBgGG6ZNkTX6jXVAZRNDn4u4DvYAx7qoX5jZGPJ0n4HHhFAJQGYSuHNSjpQFCCDEC/CjwKfNjAbwR+EfzKZ8B3mW+/4D5Mebn7zOf31KC5hRMu9Ww25V8oUi2UMTnMkYV1ahyu8kmlBa7PE4OD4QI+11cmI+33e+5VcTSRgbhdBgvKUryW98Y1qbVGcQfAb8OqPy/F1iVUqpxjElgt/n+bmACwPx8xHx+Swl6jRKTjg/2QI16+twqQKit2Paa8FElprDfjdvl5KahMOfn4yzrRvWGiGVy+D3GaDSYpWXtKleXlgUIIcQ7gHkp5dPlD1d4qrTwufLv+6AQ4qQQ4uTCwsKmjzNoqoEWdISwBarE4nWtNRuh/QJE1CwxdQcM17w79nQzH8swvpTUC3MbIJ7O43Mby5UAQa+zbTfwm0krM4jXAO8UQlwB/g6jtPRHQJcQwmU+ZwSYNt+fBEYBzM93Asvrv6mU8pNSyhNSyhP9/f2bPsigTjVtRcIMBD4zMChF3naTblY9iJ6A4bt91/4eAM7P6YW5jRDPmD2IshJTKteeG/jNpGUBQkr5m1LKESnlGPATwLeklP8n8CjwHvNp7we+aL7/kPkx5ue/JbeggxTwOEnni+TabDpESslcNH2jD6PpqGa032xSq63YRJtlEGqxqztkZBCv3NuNyyk4Px/XEhEbQLnJqbamujHM6xvDmtyIPYjfAD4ihLiA0WP4tPn4p4Fe8/GPAB/dioMJel0UirLthLuyhSKTK8m2m9JYCxDXNqkTmfYK8LF0Dq/Lgd9tBMAOn5sDfSHOz8dZ1Q5zDVEoStK5YinbhLUMIl9or+uj2bjqP2XzSCkfAx4z378E3FnhOWngvVtxPOUE2rREUSxCNifJ5Iulhm47oO6e/WbmoC76dtsPiKaNpqrLsdaau3W0k396ZorZ1TSHBztu4NHZC9Wf8pddBwGPi1xBks7lAc8NOrLtj6UMQgjxI0KID5jv9wsh9rX2sLYOVaKIt5k/7S//3bN89qmrZAvtlRmpDKLDVORck25utwCRJ+A2lgEVd+7roVCUnJmNtl1AbCWlAFGWQShFV+1HX5u6GYQQ4t8DJ4AjwF8DbuBvMZrQtiegTpQ2my9/fjKC39wybidKAcJnNG/9Jcn29vo9Y2YG4SwLEHfvN6a+Ly7ETdOk9skMW4m6+QteEyCUL7UeG66FlQzi3cA7gQSAlHIaaJv8VpWYYm3W5Iylc8xH0223eatKTGEzQJQ8Pdrsjjpmagc5y3ZFd3f5GQp7OT8XL005aeqjnONUUICy615nEDWxEiCy5jSRBBBCBFt7SFuLWrRqpwuuUJQksgUS2ULbTTKpDEJd7G6nA7dTkGm7DMIYy3SUXaFCCG7ebQj3LcXb6+/aSsr9qBUhlUFsQeUgls7ZVvfJSoD4vBDiLzH2F34O+CbwV609rK2jNCbZRqOD5f2USwuJG3gkzSeZLSCAkG/tbtDvbj9lzriShlinNnNirJtYJs+5uYRemLOI6kF0+d2lx9ZuDFsfIBbjGdtKpNTtQUgp/1AI8WYgitGH+B0p5cMtP7ItQvUg2ukFpnwi68pSmwWITB6Py1GSbQbjYm830ydjsevaHgTAXfuMPsS5uRipXOGasommMuqGqSu4FiBUBrEVN4apXAFRUShi+2NpiskMCB8Dfg94WgjR09Kj2kJKUzBtVKuPlN2tzETSbdWoTuYMu1G3c+2CU9r+7bLzkS8USeUK+D1ri12Km3d1EvA4OT8fazsF21axlkF4S4+pG8NWX/cX5mP88udOsRCzZ0mwboAQQvy8EGIOeB44CTxt/tsWlDKINnoRLc8g5qJpcm006prMGJo65XfWyja2XSou6gWtvGaucLscHB3q4PxcXDvMWUT1IML+tWxrq24Mn766wvn5OGdnYy39Oa3CSgbxq8BxKeWYlHK/lHKflHJ/qw9sqwi427DElFp7gZmPZtorgzDHO8sDhCG42D66OmtN1crlo1fu7WY6kmZ8ObmVh2Vb4uZNRflYsNqDaPX+zFLCCOKzNh0WsRIgLgJteya6nA48Tkd7BQgzg9jfH2QhnmmrpSp1sTtEeQbhaitlThUgQlX6C3eOGX2IF6cibRX8W4Vq+HvW9a2g9fszS3EjQMxFM7YcKrDS4fpN4HtCiKeAkimulPKXWnZUW4xyl2oX1MTE4YEOTk9FWYxnGOr03+Cjag5qQay8NB/0usjkCxTb5E+oJmsqlZgA7tzfjUOYDnO5Ah7XjreWr4nygnCW9a2cDoHP7Wh5BrEYN14yl+IZcsUiXoe9lhutnFl/CXwLeBKj/6De2gZD0bV97rJj6TwCuHl3J9Beo66JrNmDENeWmNoxg+jwVb5/6/R7GOsL8vJcTGcQFjB2Sq4fGVamQa1k2cwglhNZWwoDWskg8lLKj7T8SG4gAa+r5E+7BS6nLUcJvR0YMHYa2ylApLIFBjp815SYVIBvF+lm1aTu9lcXkbt1pIsvPz9DPJ2jv8Nb9XkaVWK6dukQtqZyoHoQK8mcLYdFrGQQj5oubsNCiB711vIj20LWmpw3+kiaQzSVI+Bxsq/XCBAzkVTbGCIlsgWjB1HWpA54DV/xvA0vwEqoElN3sHqAOLYrTLZQ5Opy+wT/VhHPXC9bAmu+1K3sDahJs9VklpwNMwgrAeKnMPsQrJWX2mbMFdZSzXZ5EY2kcgQ8LrqCHjp8Lmaj7bMLkcoW8K6TLw+4neSLkkybDBoou9GessWu9RwaCAFwebFt50eaRsw0C1q/dKj2Z1pZmlxOZBEYf9Ot2NpuNnUDhDnWuv6tbcZcwfSnzbdPDTtiZhAuh2Ck289cm4y6FouSVK6Ab11TtmQ72iaCi7F0HqdD1NySPmgGiPGl9jOFajYJswexvnysTINa5UefzObJ5IsMhn0ATK6kWvJzWknVM1AI8UYp5beEEP+q0uellP/cusPaWlQG0S7XWTSdJ+R14RCCvT1BfnhlmUyhgKHUbl/UIMH6DEK9kCbaRJkznjECvKeGnPdwpx+XUzATSZMrSDwu+/fOWoGUslRiWk+w1Htszc9WI65jvQFmo2nGlxNAf2t+WIuolUHca/77YxXe3tHi49pS1ImSb5M5yZiZQTgdgr29AZaTWSJtYFOpbEV97mtP2zXJdvv/jmAsOlbSYSrH6RDs6vQzF0u3nSlUM0lmC0iudZNThLwu0vnWlZaXzQb1vj6jFzgbydR6+rakagYhpfz35ru/K6W8XP65dnKUAzUm2T49iGjZWN/+/iBSwuXFBIdsblOpZBF86+6s202yPZrOVayZr2dPT4DLiwmjfKgHmSpSyU1OEfS6SGdb50tdChD9RoBYiKVtNylppUn9TxUe+8dmH8iNJOA11EDbQRG0WJQkMspLQHCg36hVX1yI3+Aj2zyJkh91lQzChk3ASlQyC6rEnt4Ai/EMqTbpvbSCSl4QCmM8ukiu0JrSpBpxHesNEPA4WUpkbTeKXasHcRQ4DnSu60OEAV+rD2wrUVaE8UyOQZv/avFsHsna77SnNwDA1ErKdncv60lWySDU3WEy0yY9iHSOkM993dz+evb1Bcnki0ytptjdE9iag7MZa8KH17/UBb0uCkVJskXTb8sJo6Q03OlnMOxlOZEjX5BUqHZtW2otyh3B6DV0YfQdFDHg51p5UFtNwGxyxlL2vxNTMhvqd+oPefG5HcxG02TyRXx2OjvXoUpM6y/2kjJnm4y5xtJ5BsK+uhnEQbN0cWEhzp2mX7XmWuI1Mgh1E9UqM5+lRBaXQ9AX8jIY9hnThIUifuxzDdbqQXwR+KIQ4h4p5fe38Ji2nFIG0Qb6+krJVQm9CSEY6fIbuxAFewcIVWJSSpyKki91uwSIKnP769lrLkJeXdK7ENVQftSdFWRLgi2+MVyKZQj5XHhcDoY6/ZydjdlumdPKHkRbBwcoq2Gn7K+vr5RcO3xrL6J7eoMsxOy/C6EyiA7vteO6qsTUDnpaUqoe0vVz++sZ6Q7gEDAdSdnuhWerUD2ITv/1I96lANGiHs5iIkvY58LlcLCr00cklSNpM2tjLQNJ+RSM/V9gVLoc9q1dEHt7AyzFs9d4VdsRlUF0+CuXmDJtoMibzBqSL5WmbtbjcTkYCPuYjehR12qU3OQC18uWBFpcYlpOZOnwuXE6Bbu7/Ehpv2U5HSBYK1m0wxRMtOS/u3ZB7OsLki9Kxm3uT60yiPLgB8ZehABSbZBBqDveYBWzoPXs6Qm0RXbYKhJmgOisECBUGTbaohsnI0C4cDkEu7oMuf2J5TYLEEKIQSHEp4UQXzU/PiaE+GDrD23rCLRRk1PdDfWVXRAHS6Ou9g4QalFuvQSFEMKwHW2DDKKeF8R69uoAUZNYJo/bKUp9xnLUdd+qss9KWYAY6jSmI6dW7dUvspJB/A/g68Au8+NzwK+06oBuBMGSu5T9A4S6A+0OrQUINeo6vmKvk3M9yZxxsXvd15+2frezLcT61N3s+kZ8Ncb6giSyBWYi9rozbQZWXtiVm5zbef05ozKIVlz3mXyBRLZglJgcgmEzQCzE7dXntBIg+qSUnweKAFLKPFD3f1QI4RNC/EAI8ZwQ4kUhxH8wH98nhHhKCHFeCPH3QgiP+bjX/PiC+fmxDf9WDRLYIn/arcDYwnXgd6/dZQ93+nGXdHvse6eZzBTwuZ24KiwI+M2lJ7ujauZBrzXdrANq1HXe/ouQjZArFDk3G6srVKh0mFzO6xv+rbzu1RZ1p9+NEIJOvxuvy8FSPGMrxQYrASIhhOgFJIAQ4m4gYuHrMsAbpZS3ArcBbzW/9r8AH5dSHgJWAFWu+iCwIqU8CHzcfN6WoNL5dihRRE2pb/c6e8XhTj9zNpf9TmYLeF2Oihd70OMikyvYXtlUlZi6KkzdVGLM1PnZabLf2XyRZLZQtzmvttIr3VS0snKghPq6fEYmL4RgIOxlOZG11U2alQDxEeAh4IAQ4rvA3wAfrvdF0kDd1rjNNwm8kTWpjs8A7zLff8D8GPPz94ktWvv1uZxt0+SMlAn1ldMOzUzDbtSQMV+Pcgez0c1ZRUolwhpeEOXsMTeop1dTLTW+2W5k80WSuUJdE55YOkfAfa2HucLnduAQkGrBjWEpgwiuZfJDYR8rCXs5y1nZg3gGQ9n11cDPA8ellM9b+eZCCKcQ4hQwDzwMXARWzTIVwCSw23x/NzBh/sw8RpayJeuhDofR5GyHHkQklSPodV0XIMZ6jQCRztl31FVlEI4KV7vftB21u6eHGkXuCVhT3wt4XPSFPKVFyJ3CV16Y5pkrK3VveOLpPH7P9dcDrA03tOK6VwGiP7T2dxzq9LNsM2c5K1NMPuCXgI8B/wH4kPlYXaSUBSnlbcAIcCdwU6WnqR9V43Plx/OgEOKkEOLkwsKClcOwxFb4024FSsl1/YvomKnbY7c57HKSGSODqHQ3GDQFF+1U361ELJ1DAOGAtTFXMBbm5mOZthCbtMqfPHqRr704S7ZO1h9XW+lVihFBj6slPQgl1KemlwBjWS6Zs9UwhZUS099giPb9N+BPgGPA/2zkh0gpV4HHgLuBLiGEOvtHgGnz/UlgFMD8fCewXOF7fVJKeUJKeaK/v3nmG8o0yO7E0pVLTO3QzFQZRKWLXdlH2jyBIGrWzL01zILWs7fX/uXDRsjmi8xF0ywnsqWmfjVUk9pRRbYk6G3Ndb+cyOAQ1waI3V1+ClIyvWqfmzQrAeKIlPKDUspHzbcHgcP1vkgI0S+E6DLf9wNvAs4AjwLvMZ/2fuCL5vsPmR9jfv5bcgs7jkFzjt7uTU7VpF5fp1e6PVdsrNujehCVSkxBr4tMG5g+xUwvCHc9Kdcy9vUGiaRyLMftZ0izEaZWUxQlrKZyrCRrj43GTdmSagS9TtLZYtP7N8vxLCGv6xrl4WFzWe7qsn2uQStn4bPm9BEAQoi7gO9a+Lph4FEhxPPAD4GHpZRfAn4D+IgQ4gJGj+HT5vM/DfSaj38E+Kj1X2PzBMw7CTtXKJS9YiUdH6XbMxNJ2bYMk8oWjMZipSa1uz1Mn2LK7KnCpFY19qvscNG+2WEjXC7zNqklVJjJG03sSm5yiqDHdJVr8o3hoimzUT49pXYhJm20TW2l0HkX8LNCiHHz4z3AGSHECxjDSq+o9EVmI/v2Co9fwuhHrH88DbzX6oE3m4DHSSSVo1CUdVU0tysJU8enkkyDx+VgMOxjNmKUIqxo/Ww3ktnCdV4QioDHSSZftH2ZxeghuepKfZejRl0vzsXhllYd2fbh4uKaIsDkijG9VemmQTX8a53rAY+T+Vi66cMNy3FDqK880Kty02I83dSf1UqsBIi3tvwotgFBj8og7HsHqmQ21ktRKEZ7AsybuxB2CxBSSlLZQsUtajAyQMmaqZBdiaVzZs3c+tfs7TECxNSq/U2hrHB5MYFTCApSGr2XQhGf4/rzuZbdqKLD5yKVLdLsyuRSIsNA2HdNqbcn4MHtFCzGs1WD2nbDypjrVSnlVSCFMVUkjYdLj7cFQW8bBIi0ChCVLwg16pppkcViK8kWihRk9XJBq5U5twqrdqPldAbchH0uZk1Dmnbn6lKC4S4fXpeDuWh1dYA14cNaPYjWlJhWkrmSDpPC4RD0d3hZSmbJ2aRXZmXM9Z1CiPPAZeDbwBXgqy0+ri0n6DXGXO3mGVuOMgvqqGCOAmu6PXMR+6S4CmUnWi2DUIGj3lTLdieeyROwYBa0ntGegO035a0yvpykv+TSVv13rmU3qgh6XKSyhab6aeQLRSKpnFFiWvd3NJblsuRtsgthJZH9GMZ46jkp5T7gPqw1qW2FGnO1yx+uEuruucNXeQv3QJ99R12Vb3A1RzxVVrN9gEhbMwtaz05Rdc0Xisyspunr8DLU6WMhlq06pqp6ENVumMAoTWbyxabukKwk1zxZ1v8dhzp9rCTts01tJUDkpJRLgEMI4ZBSPoqhrdRWBD1O8kVJ2maOT+WoElN3oHKA2KuamTaU/U6aL/xeV5UMwmN/T49M3tAW8lv0gihnb2/vwOYSAAAgAElEQVSQ5WTW1r+/FWYiafJFyXDYx96eAEuJTMnzYT0ls6AaulYlu+FM8/7f1oT6rvegGO70s5LI2iaQWwkQq0KIEPA48FkhxB8D9n0VrUJAmYfY+A5UZRC9wcoyDSXdnkjKdvseqvlcrlJbjprcsnMGoWrmVr0gytnfH0RKuLRov+DfCFdM06vhTh9jfUFyBclklcWzWA03OYXKPKNN9KVeShj7KJ0VtuFHuv3ki5LZqD3KvFYCxANAEvi3wNcw9JR+rJUHdSNQF6WdbTnVC0xPqPIFUdLtiaRtJ8ug7EbrNalTWXv9XuXENxkgAM7N2a982AiXzB2IoU4/BweM37naLkS8hh+1ohVukiqD6AtWziAArtokkFvJZQeAGXNP4TPmVvQgsNTSI9tiAqUShX0DRDSdw+ty1BzrGzV1e7KFYtV6/nZE2Y0GPLVLTCkbixGqcy9k0SyonD3mqOukzU2h6nFpMYHHKRju9NLfYewVTK+mKu4vxTM5HGLNGKgSKvNspu2oChAqGJSjluXGbaKJZiWD+AdMsyCTgvlYW6FOFDvXcKOpPEGPC08F9yyFXXV7EmaA6PBVzo7WtP3t9XuVs2Y32ngPoi/kwe92GjV6mzRAN8LVxSR9IS/hgJvRngACmK1ihBU3R4Y9VfpWUF5iat51r7wgBruu1zRVAWIxZg9ZFCsBwiWlLAmemO9XL+rZlIDX/hlEJJUj4K09Ijlm6vas2Mz6MGWWmEJVJlJUBmFnwcWohZJINYQQjHT7mW/zXYiry0l6Q146vG48Lgd9HV7mqijZxkwlV1eNG6ZWTL8tJTKEvM6Kiga9IS9Oh2AxnrFFH9BKgFgQQrxTfSCEeABYbN0h3RjUH7PaRIQdiKRyBKto3ysOmHXbizbT7UmYexDhKgGi5Apos8yonNLUTZUptHrs7Q0wH2vfXYhiUTK5kqS/w1O6Idjd5WchlqmZQbhr6FoFS72r5t1YLMUNHaZKgotOh6A/5GUpkbXFzpWVAPFvgN8SQowLISYwxPZ+vrWHtfWoZlXS1neghkxD7QwiBMB5m+1CKM3+UJUdD7fTgdspbJ1BqBJTT5UptHqM9QZZjGdLI8Htxmw0Ta4gGQr7SuPOe3oCLMUzFV/gY2lj6bCS+q9CTS8287xZSmTpWKfDVM5g2MtK0h7Wo1akNi5KKe/G8IE4JqV8tZTyQusPbWtRdV87mXmsJ5rOEawj07Cn1xh1nbJJk0yRyORxOgT+KpvUYEw42TmDUOXNjWYQ+/qDFIqSKzaSk26E0ohrl7/kl7G3J0A0nWe5gux3LGPqWtW4HkLmdd9M29HlRJawz13RGhfWdiHs4CxnRWrjl4UQYSABfFwI8YwQ4v7WH9rWEijVsG38ApPKE6hgN1pOp99Np9/FTJXG3nZFmQW5a9ST7W76FM/k8ThrT6HVYp+5CHl+LtbMw9o2XDFHQ3d3+UqNZ7X8eWnh+ow4njbd5GpcD6r32MzzZjmRpcNfI0B0+VhO5uq64W0HrJSY/rWUMgrcjzHy+gHg91t6VDeAgKf5qeZWIqUklskTtCDTMNJtP92epGkW5Kohc2p321jlBlhrCq0WyhTqqo38Bhrh0mICl0Mwao70wppT4niFrCmRLVT1o1a4nQ48TkfTbEeLRUkkWVmHSbG7y082Xywt1G1nrJyJ6rd8O/DXUsrnqOwfbWs8LgcuhyBtg6heiZRplmNlRNKOo64qg3DVaDj6PU4y+YItpkMqEU0ZOky1pm5qMRz24XYKZlZTTXdI2w5cWUzQF/JcI50xZgbFmdXUdeO9SteqHsquthlEUjkKUtJRQYdJofYjLi9u/1KglTPxaSHENzACxNeFEB1cuxfRNtj5DlRJBQQsLFmNmbo9zdSfaTWJTP1ygSHZXrStK2BpyGCDfg4Oh2BXl5/ZaLotR12vLhk7EOXie10BNwGPk9lo5pqafqEoSeUKNd3kFM287pfMJbmuKsMUsGYcNGED+18rAeKDGPafr5JSJjF2ID7Q0qO6Qdi5hq2E+mptjSoO9IeQEi5WqNtuV5KmWVCt186Ax0k6b19Pj7jpJteIWdB6lKqrnZv1lZBSMrGSpL/DW2pQg7H/scscdS3PiK2YBSmCXhepXHMyz5JQX7D6daiW5eZssCxn5VSUGBNMv2R+HASuXxFsAwJeZ9NqkVuN2gS1EiDG+oxJpnOz9goQPlftu+ugx0UmV2ypL3UrSzfRDZgFrWesL2gECJuex9VYiGVI54oMhn3XeYLs6faXnOUUa14QFjIIr7NpfvTLZl+hJ1B9VLm/w4tDwGK8PQLEnwH3AD9pfhwD/rRlR3QDUS8wdqxhqwyiw1f/glDNzHEb6fYks3m8bkftmXaPs6WugF94dpKHnptuyfcGQzsoUGePpR5jvUEy+SJTNvrbWuGKWY7Z1eW7JoMAwyxpOZElUVYybUT4MNREN0lVYhrqrB4g3E4HvUEvy4lsS29mmoGVAHGXlPJDQBpASrlCG0ptwFqJYrv/0SqhehDdNe5cFL1Bj1G3jaRt87sms0Y9uZaPb8BsUrdqvvx3vvgin37icsvKkDFzLHMzntJK1fVlmy1C1kPtQOzu8l8XQPf1BckX5TWTTKq/ZmVoQ/nRN+NaWDYlbIbC1wv1lTMYNgLEdh81t2QYJIRwYpSaEEL006ZNajs3OVUG0VtF6rscpdszF7XPJJOaYqpFwPz7tUKsLpbOEUvnOTsbLYmxNZNCUZLMFjYk9V2Oyg4v29AUqhaXFxM4heDAQMd1n1P7H1fKpoLW/KjrB4iQz0UqW2xaBuF3O+nw1/65Q50+c1lue19/VgLEJ4AvAANCiP8EPAH8XkuP6gYRbHGJopWoC6K7hjlKOXt7g8zH0mSaONbbytJcKluoK08ecBuugK2ov8+YPt65guSJ8wtN//5W/JOtsLvLj0PATAVTqHyhyEoiy4X5GJEmqpduBZcXE/SuG3FVjPWp/Y+1oLima2Uxg8gXmqKNtBTPEPa78Dprn6u7uvwsJ7f/NrUVqY3PAr8O/GdgBniXlLLt5L5BZRDNOVG2mmgqh8fpsNSkBhjrDbAYzzZNpCxfKPLc5GpLxA7zhSLZQhFvnQChJlZa4Qo4XeZa9r1LS01vVisdpuAGvCDK8bgcDHf6mI0YTdtsvshiPMNL0xG+d3GJ5yZXmV5N89J0ZNvfvZZzdSlBX4e3pL5azi4zKM5F10T7SmZBFm6YVJO6GX70hg6Tu6oOU/kxp3NFVipIhGwnLA3USSnPSin/VEr5J1LKM60+qBuFMeZapLDNo3oloukcQW9t7fty9veHKBQll5vkbPXX373C+//7D0ulrmaiBBR9dX439eKRSDc/g5heNTKIvpCHFyYjJYe7ZrEZu9H1jPYYqq6npyJ87+Iip6ciRFJ5Ov1ueoNeugMeMvmibVzNpDT6CwMd3ornt9vpYCDsuzZAlPyo6weIkMdFrtAcP3pDh8lVVWZDoUZdr2xzVeXN5bNtRtC8k8gWCsDGBNNuFJFkfSXXctQG6stzMV59sG/TP//sbJRIKsdL09GKTlqbIWlKfdctMSlXwBYsAM5EUggB9900yD+cnGBmNUXHUPPOEfWCZqVmXo+9vUGen4zw3MQqyWyB1WSOlWSWlYTxr9Mh+IXXH2B8JUV/h4/ODYoDbhXGhFLhGhXX9Yx2+1kwpc4DnrWA21FFHr4cpegayeTZ1YRjHQqHLQQI4xoZX9resiibWMlpPwIeF5I17wE7EUkbXhC1tIrKUbsQlTRsNoKq0T87sdqU71dO0ryzq9ukbqGnx/Rqmu6Ahzce6aco4Vsvzzf1+6sSUzVDpEY4NBAimS3wu186wx9+4xyfeuIyXzw1zQvTRuZzejrCf/naWbxOB2dmo9vegU6NuA53Vg8Qe3qMkqkauohn8vjcDku2usriNbbJvoyU0hDqq6HDpFAZxEw0vamf2Wp0BlGGugNtRZmk1URTeQJep+Ut3MEOQxFT6fbUGh+1ggoQF+fjTfl+5SSzDWYQqeYHiKnVJH0hD3ft78XrcnDyygq5HynWVJdthEaHDGrxk3fuIZrK0Rvy0hfy0h1wE/K6SuOz37+4yO999Sz//buX+Zm793BlKcnBgdCmf26ruGqOuI50BaqOAO/tDRDP5FmMZxgI+0pKrrXMghSBkt3w5s6bWCZPvigJ19BhUgyEjXH0pW2+LKcziDLUC0zChrajUTODsLqF63AIdneZo66bvIOUUjJrBogrS4mmyzyUAoSn9umqmtTN7g+AkUH0Bo0m6a0jnbw4HW1qphItBYjNl3uCXhevPzrAseEwe3oC1wnH3XOgj5941SiPnJ3nexeXGV9ObuuppitLSYSgZhBTJdOL5v5HPGMI9VkJ4GowYLO+1GoHImzBMtbrctITdLMYz25rYcWWBQghxKgQ4lEhxBkhxItCiF82H+8RQjwshDhv/tttPi6EEJ8QQlwQQjwvhLijVcdWDdXkjNnQkSuWanwLd29PgPkm6PbEMnlSuQJCwMRyqlQSahbqBT/orp3wBkvmL80tEaoA2Bfy4HY6eO2hfmYiaS40cRktXjILas4Oam/QQyqXZymRKb0tm29LiQw/dusu7hzr4VNPXOLqYoKzM9u31HR5IU5v0ENfR/X/m/39RvC4bJajrLgrKtR5s9nKgdqi7rQwWgswGPYZznLF7fn/Dq3NIPLAv5NS3gTcDXxICHEMQ/jvESnlIeAR82OAtwGHzLcHgT9v4bFVpFSisFmJqeQFUVZGsEKzdHvmzOzh0ECIeCbP1SarVKpR3HojvOrv1+wAsZTIki0U6Q0ZZYF7j/QD8K2zzetDxNI5nA5hqalqhb29QV53eIDXHernRw72cc+BXu7a38uJsR5uH+3GIeDf3LufXV1+Pv7Nc0yuJJvWj2o2V5YMkT5/jQb+aI/RU5teNfY/jBKTq6Y0i0LdGCY3OfKthPqslgmHwj5zm3oHZhBSyhkp5TPm+zHgDLAbeAD4jPm0zwDvMt9/APgbafAk0CWEGG7V8VWilEHYrMSUyRfJFWTDI5L7+oJkC0UmN6nbo/oPJ/Z2A3Dy6vKmvt96VCknXOfOTJWYml3imikbcQU4vquTDp+L5yZWmya7ETO9CzyuzY+5luNwCFxOB16XE5/bSdDrojPg5tbRLrxuJ//uzYfJFyV/9thFzs3GtmX/zRhxrd6gBsMpscPrKvlWqxKTpQzCvO43uxOkhPoGw9Y8xYe7DOvR7Zq5wRb1IIQQY8DtwFPAoJRyBowgguFSB0bwmCj7sknzsS1DvcBu9k5iq1G100ZHJJVEwdnZzVlUqv7D3ft7ATg319zZbpURhDy1a7vBFrkCTplLcurCdzoErxrr4aWZ6Kbr1op4xnpTtRkEPC5uG+2iP+zlw288yKWFBJ99apwz05Ftpc+1mswSSeUYDFfegShnpNvPvNlTi2Xyph91/Z8RbFLmqUpMw+GApefv7vKRyBaYXk0RS+e21f+7ouUBQggRAv4J+BXTurTqUys8dt3/mBDiQSHESSHEyYWF5koe2NV2VN31WTELKkc19q5scmFq1hzVu2k4zEi3n8uLiaZKeKix43ojoD63A0Hz/34zESNAqIAK8NpDfawkczw/GWnKz4iaPSSrY8rNIOh1cdtoNzfv7uR9J0b5zoVFvvDsdKlkuB24WlJx9ddtOI/2BFiMZ8jliyQaED5UexCbPW+W41k8TgfdQWuDBmoX4vFzi5y8sswT5xd5ZnyF8aUEK4lsU6+hjdLSMVchhBsjOHxWSvnP5sNzQohhKeWMWUJShdxJYLTsy0eA67SVpZSfBD4JcOLEiaaG3GbdSWw1EXOss8OizIZiV5cPp0MwHUkjpdywiuhMJE2Hz0VXwMNNQ2Gem1wlnS1eJ8u8UVLZPIL6PQghhGk72uQSUySN22kY0yjuPWz0IR4/v8Abjw5seqw3avpRb2F8AIz/09tGuygUi1xZSvD5kxOc2NvNe06M1v/iLaBcxbUee3oDPHJ2nkQ2Z2RkFkuuAXN8erOucsuJLGG/y7Kagbrh+P2vnaXD5+JAf4i9vQFGuvyM9gTo7/ByeDB0jQf3VtPKKSYBfBo4I6X8r2Wfegh4v/n++4Evlj3+s+Y0091ARJWitoq1O4nm1wQjqSwLsdbcmTXiJleOy+lgV6ePuU1aVM5GUvQEPfjcDo7vCjMfy7AYb97vmjDd5Kx4NfvdzfMXVkytpOgNeQl61+4M9/UFGejw8sJUpCQFshlippvcZsyCNkqHz80de3v42bv3IoTg4TNzTZ9E2ygqgzg8VH9PY19vkEJR8vJsHMnaC389HA7RlPNG6TBZ9RS/fU83f/JTt/OBV49x9/5eoukcX35+hj997CIf/ecX+KXPPcvj5xc3dUybpZUZxGuAnwFeEEKcMh/7LeD3gc8LIT4IjAPvNT/3FQzf6wtAkhtga+ov3Uk09wVmPpbmdX/wKO87McqvveUIHTX8ajeCqoP3BBsfkdzTE2BiJUU2v/E7/plImt6AMQJ6y0gnAM+Mr1SUZt4Iyk3OSn3e73GSaXKAn15N0Rv0XNMkFUJw1/4eHjkzz0o823BwXk88k6e/w7sps6DNEPa5+ZFD/dw60smTl5aZj2YY67vxe7RXFhP0BNwM1/FXgLU78tNTRtnPagYBxi7E5nsQGUs6TOXcOtKFz+Uk7HPjMs/v8eUkFxfi/MW3L/LY2QXeffvuTav8bpRWTjE9IaUUUspXSClvM9++IqVcklLeJ6U8ZP67bD5fSik/JKU8IKW8RUp5slXHVg2nQ+BzO0g3ufb34nSUdK7I3/1ggm+8NNd0FU21ZKXGMBuhGaOuc9E03UEjQBzfZQSI01O12k2NkcoasglWZ9qt/P0akSafjqToC3mvq4G/7lA/yWyBp64sWf5e1VBTTJsxC9osnQE3P/6qUSKpHN94aXZbOCteXkowEL7eRa4SatT1ZXNIopEA0Qw/ekOoz91QgOgNedjXH8DncRjN9XSe7oCHE3u7uWkozLMTK6y0wH/EKnqTeh1K0bWZqO1Op0PwiUfOc3a2eS+esLa30bWBLdx9fUFSuUKp0dwo6VyBlWSOnqAHp0MwGPbS6XdzaTHRtPE9o8RkbSvWsB2tbRsbSeW4ZLExny8UWYhl6A15rgtQah/iqUtLm/pd1dx+M5RcN8uPvWIXAY+Tx15eILENpvmuLiUZDHuv86GuxHCn0VNTQxeN3HWHvC5Sm7QbXk5k6fC7G8oCAx4XB/o7eMVIF3fv7+W1h/q4a38Pt+3p5v7jgyzGs/ywyWPjjaADxDqUbWUzubgQJ+R18YtvOMDVpSR/9uhF5pso0hVN5XE7xYZKVyotP7fBUdc58/dQTnZCCI4OdTC+nCTdpGZxMpvH53Ji5eY64DVKTLUmBuciKcv//3OxDEUJfRWys4EOH2O9AV6YipbUWDdCKlegIGVTlFw3S8Dr4t7D/Tx9dYWJJi88VqJYlKwmsxVfmGPpHMuJLINhHx4LNwcup+GFoRb+gg1lEMoszPqxl5PKFkjnioR9jS2rrsfhEPjcTjr9bh64zZjy/+6FpRs2WakDxDrUidJMLszHGe708d5XjnLv4X6+dnqWf35msmmNQGMCxmXpIlqPsqi8sEGLSrUD0VdmdXpsV5ipldSm1TEViYzRpLbSwK3nLxxL53jgz77H11+ctTR3royC+qvIPNxzoJeLC/FSoNwISmajkZJIK3nviREy+SJffmG65WWmv/7uFf7q8Uu8NB257sZMNaiHOn2Wp8RGuwOlYB1uYCtdmYVtdBdhyVySs6LDZJXRngD7+4I8M77StH2bRtEBYh1Bs8TUzAvj4kKCXV1+ugJu/t93HGMg7OWvvnOZH1xZbspyjJqhd1scrytntMeP4FrHtEZQpanBsibiLbs7yRclp6ebsyNgZBAOS7IJAY+TdL66bewLUxFS2QLn5uKWMkX1/1LNhP61h/oNG9ILG582iTbRLKgZ3Huon96gh8fOLbRUlyySyvGxL7/Enz52kd/6wmm+/Nz0NeqmKkCMdFv3F9nTs7ak1kjJ1Sgx1bYbzuarvy4omY2uOl7UjfL6I/1cWkxwfn5zy6wbRQeIdSj7wWZtNa4msywnsiUt+7H+IL/x1iOsJnP82aMXubSw+a3jSMpwk9vIiKTX5WQw7GUumt5Q81xlEGO9axfmzbuNRvWz483xhkiaftRW7iIDXheZXLHq73LK9KuYiaQt9ZqUk9yB/sqz6K891IdDwDNXNy67UbIb3QYlJgCn08HbbxnmpenohkuPVnh2fAWA1x3q49xcnI/+82k+9qWXOD21Sq5QLO1AHBm0Pg2nfE4AOi24ySkMs7Bi1et+Lprmk49frLpEWBLqa+BnWuEtx4eQ0limuxEWsTpArCNkpprN2nq/aJZuRrsNLXshBG+/ZRfvvmM3P7i8zN+dnNi0JryRQbg2vGS1pyfIfCxTMltphJlIGr/byUDYV3psf18Qj9PBpYV4U6SMk2aT2goBd+0A/5wZIKZWUiQsOM/NRFIEPU76OipPiHX43BwdCnN6OrJhDS/1dZX8lm8U7zsxQlHCF09NtUyO+umrKwgBP3nnKP/p3cc5MdbNv5ya5oOfOclff/cy5+fidPrdDTkUlm+7N1LuKfnRVxHO+4OvneUPv3GOh56frjiQoKS+reowWeVVYz10+t03rMykA8Q6VImpWRnERTND2Ne/dmfjczv51fsPc2ggxP96cpxvn1vYVN8jms4T3IRMw96+gOELsYEAoZbkyuvnLqeDgwMhri4lm7LVnDTHXK0QMDepq/0up6eiOARkC0XOWZDrnl41luT8NQLUaw72Mr6cZHxpY32cNf/k7WP9ectIF/v6gnzn/GLLxCtPXllhpMvPLbu7ePX+Pj70hoP86v2HcQjB733lLF95YYbBsLeh3owadXU7RUO7Kap3ZdgNX0s2X+TrL84B8LkfTDBVQdxSlZiGmmy363AIXnOgl9NT0Q2XgTf187f8J25zVImpWRrtFxfiuBzGZE85Q51+/u8fvQmAv/j2Rc7PbTyVj6ZzBLwuS8JkldjXFySeyW8ok5mJpOkJeq5rkN803MHEyua9IYpFSTpXxGdxiS/gNWxjKwkuriazTK2muMUsgZ2Zrj9uPLWaojfkqSmf8LrD/UgJT1xY3NDddmlMeQOLjq3kgdt2cWUpydPjzR+zLBQlz0+usq8/RIffzVCXn7v29fDAbbv52APH+Ve370YiGekONLTAqXoQPotj0YqA10lRVrYbfuLCAvFMnjv2dHF5McHnT05ed0O3lDC8vntb8Dd88/FBUrkC37+0tOWCfjpArMNYtCpSaJJG+4W5OINhH12B61PPVx/o4wM/Msa5uTh/98OJDb+Yxs0MYqPjdfuVqusGgtRs1AgQ65eDbtndSTyT5/Li5nosaru1kQwCKruDvWBu2L7mYB8AlxcTdS+4mUia3qAHd43s7M59PXhcDk5NrBLfwN+wmXajzeS9rxxBAF88Nd30F6ZzczES2QJHBkOlcVSX08FoT4DXHu7nQ284yMffdxs/fdcey9pGYJT8uvxufC5naTPZCirbqHTe/Muz0wQ8Tv7tmw4z0u3n809PXndeL5tb1FY8sBvlTUcHcTkET19d2XKvGh0g1uH3OMnmi03bpr64YIy4VnqB87gcPPja/RwaCPG107OMb2DuPJ0rkMkXSzpSG0GNup5vUKY7XyiyGMsaAWLd3dqa5MbmGtUqE7B6F6lKQZXsQFX/4Y493QyGvYwvJ2tOMqWyBVaTOfpC3poNcq/Lye2jXTw/GWFlA1mYmmKy6kS2VezuDnD7ni6+e2GRSLK527zPmA3q47s6rzt3vC4nBwZC3HfTILeOdjX8vUe6/fg9joZKriVf6nXnTTpX4Jtn5rh5dyf7+oN8+A0HWYhl+Nsnx6+5oVuKZwn73RuaJKxHh9/NraOdnBpfZXGLPax1gFhHsEkG5mDULieWUwx3Vl/06Qp4+Nl79rKUyPKFZ6caXtKLNWFEcm/vmhtXIyzGsxSkrKgBdWQojABe3uQUjLoIrd6Z1bKNfW4yQn/Iy57eAIcGOphaTdXUbZo2Zb57Q/Xv7O8/NshSIstTlxsvx8RNaepmqd82k3ffsZvFeJZHX26utP4PLy/T4XNxy+5w1ef4Pc4Nycf8/L0HeOetuxsa2gh5K7tJfvvleZLZAvfs76En6OHdd+zm2HCYh05N89LU2hj30gZkNhrhjUcGmYtleHZ8dUs9rHWAWIfyVHhhavPGKePLSQpSsrvLX1Ph8X0nRtnV5ePLL8w0rMVfUnLdxIhkwOOiN+hhNpJu6HdWPgl9FV5AQ15XU7whVAZhtcSkGpqJCqWe01MRRnuMfZTDgyHmohmiqep3xspJbqDKBFM5b715GAF8/+JSw85kMVPqu1YZ60bxwK278DgdfLnK9M5GeWZ8lf19waZ5cJfz1puHeP2R/obGvksZROra8+ZfTk0T9Dq5Z1+vsYzqcvJrbzlMLJPnf3z/KhGzJLWcyNLRoFBfI7zl5kEATl5d2VAZc6NsvzPyBvOaA3343A7+2yPnOTOzuUUvNcE02lvbYcrrdvIzd+1lciXFl55vrN6raqabVRPd0xNgPpZuaJJJbQ9XkqEAODocZmI5RTq78ReWhjMI80KPr7vQl+IZZiJpxvqCBDwuju0KUyjKmm56KqMa7a6vx7+728+RoQ5OXl0hUiPoVEIJ9bldN06orxphv4fXHe7jycvLTStvLMUzjC8nOTgQaslor9vpoDd4vXZWLdRxRMtGn1PZAo++PM+tI13s6V07B153eIBXH+jlGy/O8YPLS0gpTS8I61LfjXJwoIPRHj+nxle3VLxPB4h1jPUF+ehbj3JlKcnvf/UsM5vwa1YB4thw9TRa8dP37KUr4Oah52YamiZS9et6bmv12NsXYK7BXfijIo4AABzaSURBVAjlRb2vSgA8vivMQjyzKd0plUFYLaGVbGPXTZmoBvWh/hB+t5ObzL/JizUmmaYjKQTXLl/V4s3HBplYSfHCZGN9FyWVcqOkvuvxnleOkMwW+PLzzbFnUQuUR4fCNX2mN8O+/lBDQxtBs3JQnv09cnaOdK7IPQd66S4rozodgl9/6xEKUvI/v3+VuWiGeCbfkLTHRrj3UD/n52OcX4hvmdKuDhAVeO+JUR64bRdPXFjiTx67uGEj94vzcboDbnZbkAro8Ll57ytHOTsb45tn5iyfACUviE2m6vt6g6wmc0TS1u9OZqNpXA7BcBW3r1eojeqJlQ0fV8lu1OKdpioxrR9DfH7CCBDHR8I4HYID/SEcAq4sJavWdGdW03QF3HRa3E/40VcMA/Bog1uvsbThfnYjzIKscN9Ng3T63Xz1xdkN7cqs5+TVZZxC8Mqxrhsqb16OyjzLA8QXnp0i7HNx51jPdbsYt4508dabh/jOhUX+93NTgOGp0UrecvMQRQknLy9XHONuBTpAVCDodfH//OhN3Dbaxed+MM7f/2BiQ3V0Q6TPb7k88nOv3Yff7eQLz06xmrQWlFTw6rbQSK3Fvn7DsauRpvKsuQNRrUxw3AwQpy3sG1QjlTPtVC1efOpCX68ke2pylcGwlz1mucjndjLSHTAnmSq/6E2tKqc8a3+/o0NhRrv9PH1luaGtV9WD2K4ZhNvp4K03D3FqfJWJDS4DlnPy6gqjPX52NXmpbDOoc1iNVcczeb5zbpHbRrsY7b4+gxRC8Gv3H8HncvKpJy4DWL6R2Ch37+ulw+fi1OQqq02eKquGDhBV6O/w8Z/ffTODYR+f+NZ5vv3yQkO9ASkllxYSJQ0mKwyEfbzjFcOcvLrCk5esmdCoKabNZhBKS6mRUVe1JFdt+magw0vXJr0h1J2SmjKpR7UM4vRUhD09gWvkFw4NhJheTVXdYldb1I0sXN130wDn5+MNaWzFMpvbY9kKfuLEKPmi5He/fKZmY78euUKRFyYj7O9vTf9howRK541xnn7jxVmyhSKvPtBLT5Wbr7G+IO87McJc1CgJd27Aj6UR3C4Hd+3r4YXJCJMrW7NVrQNEDY4Oh/ndB46TL0r+45fPcGbG+p3wQjxDLJNnuMualr3iF15/AIcQ/MPTk5aWYqKpHE6HoGOzPQjTGL2RE09lENWsQIUQHBnqYHwpuWE7x6RZYrKaQagLvdwhbz6aZj6WYV9v8JpexpGhDhbiGVYT17/gSSlNJ7nqv18lfvSWXRQlfPOlecvjiAnTj3o7c/vebn7iVaN8+9wCf/iNcw1PainOzsTI5IscHgxtq9/Z6zIcC9V5+sVT03QF3LxyrKdmBvnh+w7RbQaGkSql1mbypmODJLIFTk1sXByyEXSAqIEQgjccGeAjbzrExHKS3/3fLzJrcVfg4vy1In1W2d8f4g1H+vnO+QVetCCXHTXLE55NztB3BtyEfS6mIylLL2xSSmbNLeNakxvHdoWZXk1teANUZRBW7zbdTgdupyBVtt9QalAPdlyTzR0bDiMlnK4Q+COpHOlckd6gt6G/34mxbnqCHp66smxJKjtXKJLOF7eNF0QtVNn1b5+8ymefurqhfsTTpjvaK0a6tlVJTQhR8oKJpHJ894JRXqr3ot8X8vKLrz9AT9DDAbNM20redHQQp0NwamK16cuLldABog4up4OfuWeM950Y4QdXVvjDh89Zcg9TE0wbOWk+9PqD5AqSzz01UfcuIZrKE/S4GrrLrcaengAL0QxZC+Wg1WSObKF4zXRHJV4x0mV4Q2zQozqZzeNxCkuWkwq/+1pXwOcnVxHAK0Y6r3mxPzps6GO9VCEQK5nvakZB1RBC8Poj/bw4HWHGws1EMxYdt4qQz80f/fitDHf6+a8Pn+ObZ+Ya3hX64ZUVugNuS5N9W40KEF87PUu+KHnNuumlavzMPWN8/H23bnqS0Ap9HV6OD4c5NbFammBsJTpAWMDndvKbb7uJO8d6+KenJ3nqUn1zmIsLcbwuB0eGGg8Qt+3p4sRYN988O1e3lq28IBqpk1djb2+QuVjaUoCYqeAkVwm1KXtqg5IbyguiUdmEcq+H5yYjDHf6rjOe2dsbxO0UXK0wyVRyktvAJu/bbxkmV5B888xc3eeqzGo7lVtqMdYX4g/ecwtOIfjYl17i6avLDW32PjO+wr6+YMsbuhshaJoGPXRqit6ghzv2dlsaUPCZY9Nb1VN5w9EBZiJpprZA3VUHCIt0BT38zjtuQgJfPT1bdwz1wnycoU7fhnyihRD84usPksgU+NwPJmqOTKoZeitua/UY6wuwlMhW1DFaj1qSq/cCuq8vhNfl4OLixrwhEtk83gaF18ptY6WUnJ6KsLc3SMh77d/C7XSwtzfIxErqukkmtSU+1ld/SW499x7uJ+Bx8r2LS3UFGO2UQSju2d/Hb779KPOxDL/7pZc4b0E2HYxzZiaS5uBAaFuW1IIeFwuxDN+/tMTte+qXl8oZCPtaItRXibccN7aqn7I4yLIZdIBogJtHuoxt2SsrdctMF+fj7Or0bVhf5w1H+jk8GOIrL8zULFVElZtcE+q5+/tCSGko0NZDZRAjFUYAy3E6BAf7DW+IjQggprKGH3UjMhR+j7PUpJ6LZliMZ9nXH6j4onR4MMRUhUmm6Ugap0OU/AUawe108JqDfTw3sVp36XE7mgXVw+EQ/B+vHOEDrx7j9FSUP/z6WSYtLJQ+c9XYhzk2HN6yF9NGCHldXFxIUJSG0nLnNlPXVRwdCvORNx/iLceHWv6zdIBokPuPDXJlKcmFGndNqWyB6UiaoU5fQ1LF5Qgh+LnX7mcpkeXzJyeq1noNs6DmbOGqjeGXLch+z0ZSCGHNL/imXWHGl5PENuCIlcgYQnaNCa+5SJn+wc+bW82HBjoq/i2ODnWwnMiyGLv2hXx6NUVv0LNhCZO33TxEIlvgsToid6rE1Oolq2bjdTn58H2HePNNgzx8Zp5PfecSi7HaG/Mnr67gcgju2Nu9RUfZGGqbeqDDy22jndsyiIERoN98bGhLbip0gGiQt91sRO2vvlBdduDyojHBtLs7sKkX7nfdtpvhTh//+/kZluKVL75YOlcSGNwsSvZ7woLs+Gw0TZffbcnW8bbRLpLZwoaUTpPZgjGC2JDwmpFBFKUxweQQcKspP76eY8PG489PXduoVkZBG80A33xsELdT8Pj5hZrTPqU9lqC9AgQYi2G//Y6bOL4rzN8+Oc6/PDtVs6R28soye3sDDJXZ024n1M3AHXu62L0FI6ubob/D2zJhwHJ0gGiQm4bDDIa9PHV5ueqEkZpg2tuzuZPM7XLwM3fv5epSkq+9cL38RjZfJJ0rlgxXNktv0EPA42Q6mqrbY1FLclZqyfcfH0QAj5ydb9h4PZHN43M7G+qxBDwuMrki+WKRUxOr7OryM1KlVHTEdPpbv+NiZBDeDU+HdfjcnNjbzdNXV2sulqlS5XZs2lphtCfAf3jncXqCHv7i8Us8VcX1LJMv8NJMlP19oU15l7QSdVyvPti37dz91tMb9Gyo/NkoOkA0iDHGOMBLM1HmIpV7AxcX4gjgeBNG+X767r2EvC7++dQU0XUKpaUJmCZdcEIIRrsNf+p0DZ8EoLQDYWV6aqDDx7FdYU42KEEBZgbhdtQ07FlPwOMklSuQLxQ5PRVhn6ngWondXX58bgdXlxKlJnqhKJmPZugN1d7xqMdbjg+xXMcjYrvajVpFCMFto1185E2HWUnk+JNvXeDS/PUlytNTUXIFydHhDgLbtHTzppsGePOxQW4d6dyW3hzlCCFaphxbjg4QG+BtNw+RK0i+/lLlMcYL83H6Ql4GmqA1E/a7efftu3huYpUn143XqjnoZmUQAPv7g0a/oM5im9qitprm3n9skKnVNKcmGht3TWYLJZc4qwQ8TjL5IuPLKVaSOfb1Bat+D4cp3Fc+ybQYz5Avyqoy5lZ5+y2GR8TDL1XfF4iljT2P7fqiaQWX08E7b9/Fe0+M8PT4Kp/5/lUW1vUjnlELcqOdDQX7reSNRwf5hXv3M7yNNKJuNC0LEEKI/y6EmBdCnC57rEcI8bAQ4rz5b7f5uBBCfEIIcUEI8bwQ4o5WHVczePWBPvxuJ09cWKxYX74wH2e4y7oGUz0efN0BnA7B35+cuGYEVd2NB73NK0/8yME+VpM5Tl6tftebyOSJZfL0hDyWt4zfeetuAL7xYmPLVSmzB9EIAa+LdK7AabOvcHiwo2Yv6PBgB9OrqdJy3VRpB2Jzd/UDYR/Hd4cNk5cKU2+pbIG5aBq/x7XhYYbtQsDj4lfedIibd4f5+5MTfOPF2WvkOH54ZYW+kIejg9tvQa6cXV3+lpgY2ZVWnpX/A3jrusc+CjwipTwEPGJ+DPA24JD59iDw5y08rk3jcTl49YFeTo2vXmcOUyxKriwqkb7m3BWO9gR449EBnji/xNnZtVq5UnLtaGJN9403DQDw7ZcXqu4tzJo7EL0NlEX29Qc5OBDiqctLxC1ugEopSZo9iEYIuJ3ki5JTE6s4zRJILW4a7iCazpeW45STXDOaqfcfG2JyJcVL0xGklMQzeU5eWeb3vvwSP/VXT/KV07OmVIq9AwTAUKef337HTQQ8Lv7ssUs8M75MoSiRUvLsxCr7+oKb1gxrNUOd/rb4WzSLlv1PSCkfB9bfhj4AfMZ8/zPAu8oe/xtp8CTQJYQYbtWxNYP7jw8STef57oVrl1WmIynS+SK7upp7ov38vfvJFop87gfjpTtd1ZPoaqKK5HCnn7HeAM9OrFa07QSjvATQG2ysBKNGhK2KHmbyRYrSupucQjXOn766wkiPn111JlKUedBzZvlLBYp9G1iSW887TI+Iv/rOJf6v//Usb/n447znL77PJ79zmanVFPcdHeDnXruvKYuO24FX7unhw288yPRqir98/BKXFxNMraZYiGU4NNhhm41xjcFWh8pBKeUMgPnvgPn4bmCi7HmT5mPblvuPDSGE4TpVXjK5uGCMuO5p8oTBK/f2cOtIJw+/NM/ksjGGqjKIngZfqOtx7+F+Li4kqi7oqQDR6CjgA7cZf9KvnJ62ZIjUqB+1Qs2Hn5uLmQ3q2gHm8KAxyaTsR6cjKXxuB4Odm88g9veHGOsN8K2zC3z9xVn6Qh7+9WsM7Z7/7z2v4MdfNcrNu7uaIpWyHXA5HfzEnXv40VcM8/i5Rf7h6Qm+/fI8YARifXduL7ZLOK90+1TxFUQI8SBGGYr/v707jY3rug44/j+zcB+KnCGHpLhIpERKpKzFrmRLiSS7WirFUZy0deJstYO6dlEnQRrUSN2iQJoCBVwESAOkzQenCWIUrdo4KRo5dmC7qhO7qeCl1m451oJYosRF4iZRokSTPP3wHiWKfhRn5cxwzg8QOPP4ZubqSjNn3r3nntvU1JTONt1SZWkBq+oXsP/0IMNXx67Xgj/pLqBrq0l9Zcc/2tTCl3fv55k3O3l8x7LrE8mVKa5Dv629hqf3vcd/vdNLW+0Hx4wnh5gWzbLX9nTLakM0hUvYd7Kf4Wtjs5Yhmcypj3eobjIgTCi0VJXOOocRDRUSKgrwXr9Tk6lrcISqssKUZYd961Nr+OW7vayqr8Dvps2GCoNEywupKAlSWhDI2onbRJQVBvjzHcs41nWRf973HstrnUWKa7N0gZyZ2VyH857JoSP3Z697vBNonHJeA3DO6wlU9SlVXauqa6urq9Pa2Nlsa6+hc2DkprLcJ88PU1rgp6Uq9QHi3ttqaags5rnDXVy4dJWLI2P4JPU59OuXRCgO+nntVJ/nuoWuoRHKCgMJpWbuWFHDifPDnIqhfs9IglcQU4cx2mpCs06kiwit0TLODowwOj5B56CTwhvPPh63sqaxgi3LozSEi1lZv4ANSyL81uJKGsMlhIqC8yo4TGoIl/BXH20H4K3TgywKlySdFWbm3lwHiD3AQ+7th4CfTjn+oJvNtB4YmhyKymYfWemsqn7h6I3ifcfdDKZ0jLX6/T4eXL+IMwMj/OxwN0MjTqG+VF+2B/0+7mwOc6hzyLM8RvfQNcKlBQn9HT+2eiGq8Nzh7lnPvXw9QCR2BRHwCbc33XqCetKy2hCdgyOMjI7RNeTsJJeqAOHzCasbK1lWW06krDDrc+xTQUTY2FrNo5uaAaekSS4VJDSOdKa57gb2ActEpFNEHgaeBLaLyHFgu3sf4HngFHAC+B7wWLralUpLoyEaKot54zcD1z/MTp139qGOZ/+CeHzuriZCRQH2HDjHheFrTqnvNIzrbllezcCV99nvUaa7a2gk4W/YK+sXULegiF+dvDBrpdMrbmpoWZyBaHKSuilSQm15bPMk7bXljIyOc7x3mL7hUarKCublN/u5FPT7+MNNLTz+O23cu7Iu7vUsJvPSmcX0GVWtU9Wgqjao6vdVtU9Vt6pqq/uz3z1XVfWLqrpEVVeq6pvpaleqbVke5dc9l+jsv8LFq+9zYXiUugXxbTMaj9KiIPff0cChs0Mc7ByktCCQltfa3uFcHe19p/cDv+u+eJVInFtxThIRtnfU8E73pVvWfFJVfvi/v8EnN8phxKrUDSjNVaUxl5WefI29x5y/byTJNRDGUV4U5BO317MoUmIBNwdZSkGSdq6oZXxCefHtHk6dv7HNaDrfDI9sbiHgF84NXqWkML46RbFaWOGmu54euGnB0+jYBH3Do4RLY18kN92uVXWMTyjPHZl5FPGZNzt58e0e7lu9MO6aM5GyAvw+oSOOrJnJTKbX3bIY0VB2FpTLRQ2VJSzzSHYw2c8CRJLubA4TKgyw72Qf77j5/ZNVUdNlYUUx29udTUOKg6nZC8LL3W3VHO8dpufijXTX3kvxL5Kbbu2iMJHSAl49fsGz4OGZ/sv89bNHaaspY9eqhRTGOTRRVVbIs1/6ML97e+yZ0pWlBVSVFXD0nPNvuLDCAkQqZdP+0yZ2FiCSFPD72NhaxaHOQY6cHcIvQkddfEMiifjjzS2AM4Gbrjffto4axiaUvVO2zpxcAxFOIkD4fMK29ihHzg7RM3RzzZ7xCeVL/7ofVXhkYwut0bKEsrTa68rjDtSt0dD17VZbIunfgN6YbGcBIgV2rHA2h3n+SDfR8sKYNjpP1pqmSh7d3Mz2jpq0vcZdzRG35lTf9bIbkzvJ1Sa5iOxjqxfy/rjy82nDTN/Ze5yDnUM8uGERbbWhhEsai0jcgXNyHqK8KLEUXmPmGwsQKbC1PYrfJ/Rfdiao4x0SSdSf3L101jpDySgITEl3veaku07uRb0onNww2vqWCOVFAX7x7vnray0OnhngOy+f4M7FYTYujbCsNjSnE5sdbsmNSFmhpWQagwWIlAgVBbnDzbdPZRXX2VSUBGmNpnc4a8vyavouj3Ko01kM2DV0lcKAj+pQcoueAn4fW9trOHBmkL7hUa6MjvHl3QdYUBzk8+ubuK2+Ys63fGx1V7+HY9znwpj5zt4FKbLVnTSuryiesw8XEYk5jTNR29x01xeOOPMQ3RedVcapKEOxa2UdV9+f4IWj3Xx9z1HO9F/h4Y2LWdmwYE6G6aZrdTOZwiXBhHeSM2Y+yZZaTDnv/jvqeentHja0VGW6KSlV76a7vnW6n9GxCboGnY2C4i1/4WVTWzUlBX6eeuUUZwdH2LGihg8tqUp6+CpRZYUBvnHfCipLggmn8Bozn9gVRIpUhYp48vdWxl3ALhfcsyzKuz3DnL90je6hEcJlBQR9yf/XKQj4uLutmrODIzRWFvPpdY2015VndEHVA+saWZ3GeR1jcokFiBSqryymJgWbzGSbbe1RxiaUF9/uovfSNSKlhSn7EP/sXU2ES4I8srmFVQ1zP+8wXVHQn/Z1LMbkChtiSqH5uhnKuuYwRUEfzx/uZmxCk1oDMd2m1mp2P7qegN9HxKp9GpNV5ucnmkmpwoCfu5oj/M/xC0Byq6i9LI2GsIW2xmQfG2IyMdm6PMq4W9I8mmSK63R+n9iksDFZyAKEiclvL49ev900DyfijTEfZAHCxKQxXMLiSAl+Eeri3IvaGJObLECYmH1qXSO31ZenfItTY0x2sklqE7PH7lnKzhW1tjOYMXnCAoSJS0u1lcE2Jl/YEJMxxhhPFiCMMcZ4sgBhjDHGkwUIY4wxnixAGGOM8WQBwhhjjCcLEMYYYzxZgDDGGONJ1K3QmYtE5DzwXoIPrwIupLA584n1zcysb2ZmfeMtG/tlkapWz3ZSTgeIZIjIm6q6NtPtyEbWNzOzvpmZ9Y23XO4XG2IyxhjjyQKEMcYYT/kcIJ7KdAOymPXNzKxvZmZ94y1n+yVv5yCMMcbcWj5fQRhjjLmFvAwQIrJTRH4tIidE5IlMtyeTROQHItIrIkemHAuLyEsictz9WZnJNmaCiDSKyMsickxEjorIV9zj1jciRSLyuogcdPvmG+7xZhF5ze2bfxeRgky3NVNExC8i+0XkZ+79nOybvAsQIuIH/hH4CNABfEZEOjLbqoz6IbBz2rEngL2q2grsde/nmzHgz1S1HVgPfNH9f2J9A9eALaq6GlgD7BSR9cDfAX/v9s0A8HAG25hpXwGOTbmfk32TdwECuBM4oaqnVHUU+Dfg4xluU8ao6itA/7TDHweedm8/DXxiThuVBVS1S1Xfcm9fwnmz12N9gzqG3btB948CW4Afu8fzsm8ARKQB+CjwT+59IUf7Jh8DRD1wZsr9TveYuaFGVbvA+aAEohluT0aJyGLgduA1rG+A60MoB4Be4CXgJDCoqmPuKfn8vvo28DVgwr0fIUf7Jh8DhHgcs1Qu40lEyoCfAH+qqhcz3Z5soarjqroGaMC5Km/3Om1uW5V5IrIL6FXV/5t62OPUnOibQKYbkAGdQOOU+w3AuQy1JVv1iEidqnaJSB3Ot8S8IyJBnODwL6r6H+5h65spVHVQRH6BM09TISIB95tyvr6vPgzcJyL3AkVAOc4VRU72TT5eQbwBtLpZBQXAp4E9GW5TttkDPOTefgj4aQbbkhHuuPH3gWOq+q0pv7K+EakWkQr3djGwDWeO5mXgfve0vOwbVf0LVW1Q1cU4ny3/raqfI0f7Ji8XyrnR/duAH/iBqv5thpuUMSKyG7gHp+JkD/B14D+BHwFNwGngk6o6fSJ7XhORjcCrwGFujCX/Jc48RL73zSqciVY/zpfMH6nq34hIC07SRxjYD3xeVa9lrqWZJSL3AI+r6q5c7Zu8DBDGGGNml49DTMYYY2JgAcIYY4wnCxDGGGM8WYAwxhjjyQKEMcYYTxYgTF4TkQoReSyG8xaLyGdjPO/IDMdnfLyILBSRH8/0+1s9tzHpYgHC5LsKYNYAASwGZg0QiTzeXWF7TlXv9/q9MZliAcLkuyeBJSJyQES+KY5visgRETksIg9MOW+Te95X3W/zr4rIW+6fD8XwOlMf/wUReUZEngVenHp1kMBzG5MW+ViLyZipngBucwvPISK/j7PHwWqc1eVviMgr7nmPq+ou97wSYLuqXhWRVmA3sHaW15n6+C8AG4BVqtrvVoyd1BvncxuTFhYgjLnZRmC3qo7jFOb7JbAOmF7JNQj8g4isAcaBtgRe66UZynSk4rmNSZoFCGNu5lWa2ctXcWpXrcYZqr2awGtdTuNzG5M0m4Mw+e4SEJpy/xXgAXdDnGpgM/C6x3kLgC5VnQD+AKdwXTyvcyvxPrcxaWFXECavqWqfiPzKnSD+Oc5OYBuAgzibunxNVbtFpA8YE5GDOPt4fxf4iYh8EqeU80xXA5MOTXv8wC3Ojfe5jUkLq+ZqjDHGkw0xGWOM8WQBwhhjjCcLEMYYYzxZgDDGGOPJAoQxxhhPFiCMMcZ4sgBhjDHGkwUIY4wxnv4fc1HT66MMakUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "plt.figure()\n",
    "sns.lineplot(data=df, x='total trial', y='escape time')\n",
    "#df.plot(x='total trial', y='escape time', hue='agent')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0, 1)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4lGX28PHvyaT3HiCVEnonNAGpIiqKDbH3svbu2nYtu7676/5cy+oWVNZGEbBh7w2U3juhmIQWCGkkpM79/nGHGCEJSchkUs7nuuZKZuaZZ04eZc7c7dxijEEppZQC8HB3AEoppZoPTQpKKaUqaVJQSilVSZOCUkqpSpoUlFJKVdKkoJRSqpLLkoKIzBCRTBFZX8PzIiIviEiqiKwVkYGuikUppVTduLKl8BowqZbnzwCSK243Av92YSxKKaXqwGVJwRjzA3ColkOmAG8YazEQKiLtXRWPUkqpE/N043vHAulV7mdUPLb32ANF5EZsa4KAgIBB3bt3b5IAlVKqtVixYsVBY0zUiY5zZ1KQah6rtuaGMWY6MB0gJSXFLF++3JVxKaVUqyMiv9TlOHfOPsoA4qvcjwP2uCkWpZRSuDcpLACurJiFNAzINcYc13WklFKq6bis+0hEZgNjgEgRyQAeA7wAjDH/AT4BzgRSgULgGlfFopRSqm5clhSMMZec4HkD3Oqq91dKKVV/uqJZKaVUJU0KSimlKmlSUEopVUmTglJKqUqaFJRSSlXSpKCUUqqSJgWllFKVNCkopZSqpElBKaVUJU0KSimlKmlSUEopVUmTglJKqUqaFJRSSlXSpKCUUqqSJgWllFKVNCkopZSqpElBKaVUJU0KSimlKmlSUEopVUmTglJKqUqaFJRSSlXSpKCUUqqSJgWllFKVNCkopZSqpElBKaVUJU0KSimlKmlSUEopVUmTglJKqUqaFJRSSlXSpKCUUqqSJgWllFKVNCkopZSqpElBKaVUJU0KSimlKmlSUEopVcmlSUFEJonIFhFJFZEHq3k+QUS+FZFVIrJWRM50ZTxKKaVq57KkICIO4CXgDKAncImI9DzmsEeBucaYAcDFwL9cFQ8AZcUuPb1SSrV0rmwpDAFSjTE7jDElwBxgyjHHGCC44vcQYI/LolnxOvxrGBTluuwtlFKqpXNlUogF0qvcz6h4rKrHgctFJAP4BLi9uhOJyI0islxElh84cKBh0cT0guxd8N7vGvZ6pZRqA1yZFKSax8wx9y8BXjPGxAFnAm+KyHExGWOmG2NSjDEpUVFRDYsmLgWG3w5bPoE1cxp2DqWUauVcmRQygPgq9+M4vnvoOmAugDHmZ8AXiHRZROMehaju8OnvIX+fy95GKaVaKlcmhWVAsoh0FBFv7EDygmOOSQPGA4hID2xSaGD/UB14esPU16G0AOZdA+bYhotSSrVtLksKxpgy4Dbgc2ATdpbRBhF5UkTOqTjsXuAGEVkDzAauNsbFn9TR3WHso5D2Eyx27WQnpZRqacTVn8GNLSUlxSxfvvzkTuJ0woyJsH8D3PQjRHZpnOCUUqqZEpEVxpiUEx3XNlc0e3jAhTPs7/OvsUlCKaVUG00KAKEJMOmvsG8tfPsnd0ejlFLNQttNCgADr4QuE2DRC5Cx0t3RKKWU27XtpCAC5/4HvAPh3euhtMjdESmllFu17aQAEBgFU16CQ9vh3RvdHY1SSrmVJgWAHpNh2C2w6QNY+Jy7o1FKKbfRpHDUxD9D4gj45k+w/Vt3R6OUUm6hSeEoDwdcPBMCou001Zw0d0eklFJNTpNCVX5hcNlcKD0CM6dCyRF3R6SUUk1Kk8Kx2vWBKS/Cgc3wng48K6XaFk0K1ekzFYbeDJsWwMJn3R2NUko1GU0KNTn9qYqB5z9D6tfujkYppZqEJoWaeDhg2kwIiIJ3roNdP7k7IqWUcjlNCrXxD4NL54F4wOtnwcf32UFopZRqpTQpnEj7PnDzz5A8EZa9DC8OgZ0/ujsqpZRyCU0KdREUA5fMgfOmQ2khvH42fHgnlBS6OzKllGpUmhTqSgT6TYObF0H3M2HFa/BiCqR+4+7IlFKq0WhSqK+gdnDRW3DBq1BeCm+dDwufd3dUSinVKDQpNISHB/S50LYaYlPgq8dg8b/dHZVSSp00TQonIzAarvwAOgyAzx+C5f9zd0RKKXVSNCmcLJ8AmxhiesPH98Dq2e6OSCmlGkyTQmPwDYarPoLIbrDgVlg3390RKaVUg2hSaCx+oXDNJxDWCd67CTZ96O6IlFKq3jQpNCb/cLj2MwiJh/nXwtbP3R2RUkrViyaFxhYQCdd8Zqeuzr0S0pe4OyKllKozTQquENzOJgZPX1hwJ5SXuTsipZSqkxMmBRFZLiK3ikhYUwTUaoTEwoQn4MAmXcOglGox6tJSuBjoACwTkTkicrqIiIvjah0GXmmnqi58BgoOuTsapZQ6oRMmBWNMqjHmEaArMAuYAaSJyBMiEu7qAFs0Dw+Y/BwcybaL25RSqpmr05iCiPQFngH+DrwDXAjkAVoN7kTiB9vtPdfPhz2r3B2NUkrVqi5jCiuAZ4FlQF9jzB3GmCXGmGeAHa4OsFU4/f+Bwxs+uQ+cTndHo5RSNapLS2GqMWa8MWaWMaYYQEQ6AhhjzndpdK1FYDScej9kLIc1s9wdjVJK1aguSaG6mg1ax6G+ht8GoYnwzZ+hKM/d0SilVLVqTAoi0l1ELgBCROT8KrerAd8mi7C18PSGs56B/L02MSilVDNUW0uhGzAZCAXOrnIbCNxQl5OLyCQR2SIiqSLyYA3HXCQiG0Vkg4i07r6V5NOg83hY+Roc2OLuaJRS6jhijKn9AJHhxpif631iEQewFTgNyMAOVF9ijNlY5ZhkYC4wzhiTLSLRxpjM2s6bkpJili9fXt9wmo+sHfDSEEgaAZe/Z6etKqWUi4nICmNMyomO86zlBA8YY54GLhWRS4593hhzxwnOPQRINcbsqDjfHGAKsLHKMTcALxljsivOWWtCaBUiOsHQm+DnF2HOpRCWaOskBXWA4A4QEmfve/m5O1KlVBtUY1IANlX8bOjX8lggvcr9DGDoMcd0BRCRRYADeNwY89mxJxKRG4EbARISEhoYTjMy9mG7ZiF9MWz7Akz58cf0vgCm/Au8dPhGKdV0akwKxpgPK36+3sBzV1cK49i+Kk8gGRgDxAE/ikhvY0zOMbFMB6aD7T5qYDzNh3cAXP4OZP8CJYfhcKYdgC7MsqufD2yB9e9A3m6YNgsCItwdsVKqjait++hDjv8Qr2SMOecE584A4qvcjwP2VHPMYmNMKbBTRLZgk8SyE5y75fPyg+juv33MWQ7lpeAshUXPwQ/PwP8mwWXzICzJLWEqpdqW2rqP/u8kz70MSK5Y6LYbW1jv0mOOeR+4BHhNRCKx3Ultd5W0h8Pe8IWxj0JADHz+MMw43bYY4ga5O0KlVCtXW/fR9ydzYmNMmYjcBnyOHS+YYYzZICJPAsuNMQsqnpsoIhuBcuB+Y0zWybxvqyECQ26AgChYcBu8eR6c/1/odoa7I1NKtWI1TkkVkbnGmItEZB2/7UYSwBhj+jZFgMdq8VNSG2LH9/DOdVCcB6f/DQZdpVNZlVL1ctJTUoE7K35ObpyQVIN1Gg2XvQPzroRP7oHD+2wtJUdt//mUUqr+avy6aYzZW/HzF6AY6Af0BYorHlNNqUM/uOI9u2nP93+1Yw26zadSqpHVpXT29cBS4HzsPgqLReRaVwemqhHeyc5EShwBS/8LH9wCZaXujkop5SKFJWWs+CWb1xbt5O63V/PjtgMuf8+69D/cDww4OgAsIhHAT9gd2FRTC2oH02bC+zfD2rehKBemvqYroJVqwUrLnezLLSL9UCEb9uSxdncOG3bnsSurAGfFiG6gjyfdYgIZlRzl0ljqkhQygPwq9/P57Upl1dT8w+DC/8Gn98Gqt+CtC+DSt8EnyN2RKaWqKC13kl1YQnZBKYcKSsgpLOHg4WLSs4+QkV3Inpwi9uQc4eDh4soPf4BQfy/iQv04vVc7OkcF0iU6gMQIfxLDA1wec22L1+6p+HU3sEREPsDOQpqC7U5S7uTtB5OfB/9Iu9Dtf2fCFe/r6melmsChghI+XbeXg4dLyD1SQu6RUnKPlJJXVEZ+USl5R8rIKSyhoKSaEjaAQ4RQfy/CA7zpGBlASlIYkYE+xAT50DkqkKTIAIJ9vfD3ceDr5cDH0wOR6opENL7aWgpHv3Zur7gd9YHrwlH14vCECY/bnd2++AO8OgGuXACh8Sd6pVKqgb7dksn989Zw8HAJAF4Owd/bEz8vB/7eDvy8HXQI9aVrTBDBvp4E+XkS7OtFsJ8XYf5eRAZ60y7YjyBfT3y9HXh5eODl6YGXQ/Dy8MDDo2k+/GtS2+K1J5oyENVAIjD8VvCPggW32rLcKdfAyHu11aBUIzpSUs5TH2/krSVpdAj15dHJPegbG0Kgryc+nh74eDrw9vTA08MDh4fg6SG/+dlU3/RP1gnHFEQkCngA6EWVHdeMMeNcGJeqr34XQXgSfPlH+PklWD4DBlwJo+6DoGh3R6dUi7YuI5c75qxi58ECxnWP5vqRHemfEIq/d+tbK1SXZbEzgc1AR+AJYBdtoWBdSxQ/BK76EC6dD+37wdLp8Hwf+PBuyDu2FqFSrcfD767jgn//xIY9uY163nKn4Z/fbOPcfy0ip7CEeyZ05YlzejGsU0SrTAhQt53XVhhjBonI2qOlLUTke2PM6CaJ8BhtssxFQ5QWwfZv4afnIW0xePrAsFtg3B+0RIZqVT5cs4fbZ6/CQ8DT4cGtYztz25guOBwN+//cGMO+vCLWZeTyn++3szIth0GJodw0qjPDu0QQ5OvVyH9B02iMMhdHHV0dtVdEzsKWv447meBUE/Dyhe5nQKdTIfVrWPgsLPwHePnDqffZsQilWrjM/CIefX89SRH+PHhGd178JpVnv9zGVxszeXZaP7pE1z5N2xjDntwi1qbnsDo9h3W7c9m4N4+cQvux5+fl4NoRSVw2NIGkyEAcbh4Ebgp1SQp/FpEQ4F7gn0AwcLdLo1KNxzsAep4DiafAzAvhu79AcBwMOG6HVaVaFGMMD72zjsKSMh48oxvjuscwumsU//5uO9N/2MHkFxZy78RuXD+q428GeTPzi/gpNYvvtmbyc2oW+/OLAfAQaB9iZw11jAwgOTqQvrHBdGsXQoh/y2wdNMQJu4+aG+0+Ogn5++201cMH4JI50HmMuyNSqsHmr8jgvnlrmDoojofO7EF4gHflc+t35/L7d9ayYU8egxJDuXZER5btymZh6kFSMw8DEODtoEtMID3aBdMlJpDu0UHEhPgS6u9tp5Z6Odw+PbQx1bX7qLbS2Q8YY54WkX9SzQ5sxpg7Tj7M+tOkcJIyN9vd3MTDrmlo19vdESlVb3tyjjDx2R9oH+LL85f0p2f7kOOOKSkr56VvU/nP9zsoLnPi5RC6RNsk0C8uhH4JoUQF+hDoYxeJeTVwDKKlaIwxhU0VP/UTuDWJ7g4XvgazL4K3L4erP4aQWHdHpVSdGWO4f/4aSsud/G50J5JrGDfw9nRw92ndOLtfB35KzaJffCgdQv1aZSugMdW2eO3Dip+vN104qkl0HgNn/gM+vA3mXmFLcvse/01LqaZ2tOeitoVeM5eksSg1i8uGJjChR7sTfsPvEh10wgFn9avaah99SDXdRkcZY85xSUSqaQy4DHJ+gR+ehvd+BxfMsPWUlHKTdRm53DxzBcWlTs7s255pg+OO6xZKyyrkqY830bN9MFefktimBoCbSm3dR//XZFGopicCYx60iWHt2/DJvXD6/wO/UHdHptqgD9fs4b55awjw8aR9iC9v/ryL13/aRXJ0IOcOiGXqoDgiA324d95qAG4e3YlOUfrt3xXqNPtIRPyABGPMFteHVDsdaG5kpUUwexrs+A7COsLYh6HHOXadg1Iu5nQanv1qK//8JpUuUYHcfVoywzpFsONAAe+vzuCHrQdJzz6Ch0DnqEC2ZR7mmhFJ3HNa1xa7iMxdGm3xmoicjW01eAMdRaQ/8KR2H7USXr52056Fz8GKGfDuDdBpJoz7oy2VoftAq3oqdxqyDhcT6ueFt5ejxuMKisu4++3VfLFxPyM6R3D7+GQGJITi4+kgItCHgYlh5B0pZcnOLBas2cPP27MYmBDKlcMSNCG4UJ3KXADjgO+MMQMqHqssedHUtKXgIqVHYM8qWPxf2PIROLyh/2Uw8i4I6qClMdRvlJQ5+XHbAbbtz2d3ThF7c4+wN7eI/XlFHCoowWnA39tB//hQRneNYnyPaDpHBVYOIGdkF3Ld68vZtj+fCwbFccPIjnSJDqpxRlBpuZOcwlLyi0pJigjQmUMNcNLrFKqcaIkxZqiIrNKk0MoZAwUHYNuXtpje3tUQmgCn3AH9LgGfQHdHqNxs18ECZi75hXkrMipLQXg5hDB/b3sL8CIiwIdQfy/SDhWyYXcehwrtvgMxwT4M6xRBv/hQXvwmlaLScm4c1YmLB8fTLlQnObhaY9Y+Wi8ilwIOEUkG7sDu0axaGxG7YU/fi6DDQFg/H1a+AZ/cD7/8ZAeig9u7O0rVxErKnHy+YR9vLv6FpTsP4SHQOzaEK4ZF0atDMJEBPvh5O/DxsnsK+Hh54OXhgQFyCovZsDufpbsOsTYjh8837OOD1XuICfbhgUk9OKN3B0L8tCuoOalLS8EfeASYWPHQ58CfjTFFLo6tWtpSaEJHcmD3Svj5Rdj+NUQkw9nP2zpKWlCv1TtcXMY/v97G3OXpZBeWEh7gzSmdIzitZzR9YkOJDvYl0KduY05l5U4KSsrJKSxmdXouMUE+9E8Iw7eWMQfVuBql+0hEHMBfjTH3N2ZwJ0OTQhNzlkNuBqx4DZb8BzAw+iG725sOQrda63fncuuslaQdKqRPbAhju0YzulskiREBhPp7t4lqoa1No3QfGWPKRWRQ44WlWhwPB4Ql2nLbcSnw1ePw1R/hl0Vw7r8gINLdEapGZIzhjZ9/4c8fbyTQx5P7J3bjrD7tiQ72xc9bv9W3BXX5qrdKRBYA84CCow8aY951WVSq+fEOgG5n2mmqXz0O6+bDf0fB+a9A0gh3R6caQW5hKffPX8MXG/fTJzaEW8d2ZmRyVJ27iFTrUJf/2uFAFnZa6lEG0KTQ1ohASBxMeQk6joEvH4U3p8DZL0L/i90dnToJK37J5vbZK9mfV8zUQXFcP7IjnaMD8WzllUPV8U6YFIwx1zRFIKoF8fSBgZdDwlCYfTF8cAsUZcOwm90dmaonp9Mw/ccd/P2zLYQHePPImd05p18HIoN0RXtbpe1C1XCRyXDt5/DGufDZQ3a20pgHdWZSC5GZX8Q9b69hYepBUhLDuHVsZ4Z3jtQZQW2cJgV1cgIi7Z4Msy6C7/8KR7LteobaZiYdybarpxNHgqd3zccpl/l2Syb3zV1DflEZVwxL5NoRiSRGBOpKYaVJQTUCvxC4/F27N8PS/0JRLpzzz99+4DudsP1bW19p2xdQXmKntU54Uqe2NqHisnKe/mwLry7cSWyYH/dN7MaZfdprCWpVqbb9FO4Bco0xrx7z+O2AwxjznKuDUy2ITwBcMtsW1Fs7B4py4ML/wZFDsHwGrJkNeXvAyx86j4fD+2DxvyA0CQZfr7WVmsCOA4e5bdYqNu7NY3TXKG4e3Zn+CaHaXaR+o7avaNcCA6t5fDqwDNCkoH7L0wfOfxV8gmHVm/BiCuTvBeOEmN7QeyrED4GAKLtvw6xp8OUfIDgOup+hYxEuYoxh/ooM/vjBBjw84HejO3PJ4Hjiw/21u0gdp7akYIwxJdU8WCy17ZVXhYhMAp4HHMArxpi/1nDchdh1EIONMbpcuSXz9ILJz9ntPde/Az3Phc7jIDQRQuIhMOrXwnrT3oTXz4aP7oDguRBb3XcQdTJyj5Ty8Lvr+HjdXpKjA7l5TGfGdosmLEDHclT1au3MFZEYY8z+Yx+ry4krSmS8BJwGZADLRGSBMWbjMccFYYvsLalP4KoZc3jCaU9C/0sBsUX0fEKO7yJq1wem/AvmXQXv3WTHJULj3RJya7RkRxZ3vb2azLxiJvdtx1XDk+gTp91Fqna1deT+HfhYREaLSFDFbQzwIXXbqnMIkGqM2VHR4pgDTKnmuD8BTwNuKbCnXMTDATG9IKYn+IXVPGbQ7QwY/xgc3Gr3ii481LRxtkKl5U6e/mwzF09fTLnT8PtJ3bh/YncGJoZrQlAnVGNLwRjzhogcAJ4EemNXMW8AHjPGfFqHc8cC6VXuZwBDqx4gIgOAeGPMRyJyX00nEpEbgRsBEhIS6vDWqsUQgaG/g0Pb7YD05w/Bmc/o3g0NtPNgAXfMXsW63bkM7xzOTaM6MSgpXHcqU3V2ooJ4n4rIMmPMwQacu7pxh8qSrCLiATwLXH2iExljpmMHuElJSTnxptKqZXF4wsSn4NAuWDMHQhJg+C129zcPTxCHHax2loF4tNn9o1MzD/PN5v34eXsS5ONJoI8ngb6eBPl6EuTjxc87DvL4go14CNx0aiemDY4nMSJAK5qqeqltSurZwAygVEScwEXGmPpsrpMBVO0gjgP2VLkfhG2BfFcxbt0OWCAi5+hgcxvk7Q/n/QfemAI//h8seh5MuU0GxvnrcR6eMP5xGHG720JtauVOwys/7uCZL7ZSUu6s9dhuMUHcMq4zY5Kjde2BapDaWgpPAaOMMZtFZCi23390Pc69DEgWkY7AbuBi4NKjTxpjcoHKussi8h1wnyaENiwoBi541SYF8bBdS1IxFnH05961dhqrtz8Mvs59sTaRXQcLuHfuGlakZTMwIZTrR3YkJsSX7MIScgpLySkspaC4jILicrw8hcl9OpAco4XsVMPVlhTKjDGbAYwxSypmCdWZMaZMRG7D7tTmAGYYYzaIyJPAcmPMggZHrVqvdr1g7CN2fYOXH3gH2rLdnr7g8AJnqa219Mn94BNktw5thZxOw1tLfuEvn2xGKrqDrhiWQGyYPzXNCDfG1PicUnVV485rIpIB/KPKQ/dUvW+M+cdxL2oCuvOaoiALXj0NctNh6mvQ/Sx3R9SoMrILeWD+Wn7ankXfuBBuGdOZMd2ideaQOimNsfPay9h+/5ruK+UeARFw5Qcw43R45zq4eDZ0HuvuqOqltNzJwcPF7M8rZn9eEZl5RezLK2JfbhGfbdhHudNw3YgkrjolifjwmlsHSjW2Wvdobo60paAqHdwKM86A8mK4dD4kDnN3RLUqK3fy2YZ9vPLjTtak53DsvzwPgRA/LzpGBnDdyCTG92inrQPVaE66pSAiL9T2QmPMHQ0JTKlGE9kVLp8Pr0+BOZfAFe9Dh36/Pu90wuFMyNkF+fsgNgVC45o8zNzCUmYtTeO1n3ayP6+YqEAfJvaKITrIl4hAb6ICfUgI9yMuzJ9AXy98vDwI8vHU1oFyi9q6j1ZU+f0J4DEXx6JU/XUYABfPtPs5zLoIEofbaqz5+6DgAJQW/npsRDJc9IZdZd0Edhw4zKsLd/Luyt0cKS2na3QgFwyIY3yPaDpGBeLv7cDb4aFF6VSzUqfuIxFZZYwZ0ATxnJB2H6lqbfrIbgtqDARG20qsgVHgHwl+EVByGJa9bPeYnvrGb1sUtUlfalsc8UPqXN77UEEJf/xgPR+t3YunhzAoMYxJvdtxSucIYsP8CfTR/SNU02uMgeaqWtbAg2p7ekyGqJ6Qvd2ugHZ4201+HD62pLenr00IXz9hu5oueh3iBtd8viM58OkDsPZte98/ErpOhJ7nQaexthpsNb7ZvJ8H5q8lu7CUiT1jmNy3Pf3jQ4kJ8cXHU8cHVPOnX1lU6xHZCcKTav5GP/Qmu+jts4dgzmV2OmviKccft/1beP9mOLwfup8NEZ1h14+wdh6snmXLgncaCz2nQPJE8AnkcHEZf/poI28vSyc21I8/TO7CxB7tiAnxbd5lJkoKYcvH0GWi3UFPtXm1DTTn82sLwV9E8o4+hd1rIdjVwSlVb7V18Ti8YMCV4BUAH90Nb18OF8yAzmPs8yUF8PmjdsvQoPa2emuPKbacd0k+ZKXC5k8g7WfY8ilsfB8iu7Ji1Cvc+VkWu7OPMLFnNNeN6kSf2BD8vZv5d66D22xyPLgF2g+AS+dAUDt3R6XcTKekqrbH6YTNH8EHtwIC579sv/2/dwPkpNlvzUNuhPgUW/a7qvJSKMyCA1sp3fQxHsteZpMznrs8H+WCUwdwTr9Y2of4Nv/B4/Xv2r9fHNBptG0tRCTDpXMhvKO7o1Mu0NhjCkq1Hh4e0ONsu1/0uzfYTX7Ki8EvHMY+Cl1Ph6judkziWA4vCGrHkgNePLKpnNiSEF72/gcf+v4R02km/mFdmv7vqY+yEluefNkrENEFRtwFHU+FxBG2ptTrZ9vFgO37uDtS5SZaNUu1TSKQPMFOZw2KgU5jYPI/oP9ldke46hICkHW4mHvnrmba9MXkFJUxYOz5HB7/F3xLsvCfd6mdrdRc5aTZ8iDLXrGtoTP+bpNjWKLd0+LsF+w03rfOg12L3B2tchPtPlIqfz/kpkFUjxo393E6DW8vT+cvn2yioKSc03rEcNXwRPolhOLv6QFr58LHd9kCfhe+Bh1HNu3fcCJbv7CtovJiGHQt9Lv4+NaQMbDxQ1hwC+AB5/0Xuk2yCbS+8vfb0ufBHRrtT1Anp67dR5oUlDqBTXvzePi9daxKy6FrTCDXjujIhB7RRAT6/Lrq2OmEjR/AgtvsdNjzX4Yu4xv2gdqYjIFFL8BXf4SQeBh5t50xFRJXfWzGQOq38N71duHfWc/ZSrR1XKMBwKEd8K/htnvqnBehQ3/3XwelSUGpk5VXVMoLX23jf4t24e/jYGpKHJcOSSAxIgCv6vYrcDrtgO0Ht9p5e5Ofhe5n2hLgdWVM432AOp3w+cOw5N8QNwRO/T0kDAHfOkwc/GUxzL8GCg/AeS9D7/Pq/r4zp8KO78BZDsHtbbdUp7H1Syyq0WlSUKqBnE7D/BUZ/O2zzRwqKGFUciRXnZLEsE4RBJxoNbIxsPVLeP8mOHIIgmPtQG7vCyDpVPDyOf41xYdh5/ew9XNI/co+ds6L0GUGPl6fAAAXBklEQVRcw/+IshJ47ybY8C50mQBjHoL2/exAeV3tXQdvTgFPP7jh67pNV93+nX1Nn4sguuevGyad8XRFi0MX8LmLJgWlGmBlWjaPfbCBdbtz6RwVwBXDEzmzd3uignzqXqDOGEhbYldD71kJ+9baLUX9I+30z17nQ2gCbPsCUr+EjOV2/2lPX4juYWs3FRyAUffZD/P6fsMuzrfrD3Z+D70vtDOMYno27AN51Sz44Gbodymc80LtSaW8DP49HI5kw5SXIGEYbPvaznYqzIIxD8KIO+uXmFSj0SmpStXD/rwi/vLpZt5ftZtQfy+uH9mRaSlxJEUFVt9VVBsRSBhqV1fn74VDu2D3ckhfAps+hPXv/HpsSBwknwYdUuxrwjoCBt7/HfzwNPzyE0x9HQIja3izYxw+AG+dD/vXQ8p1dlZRRJeGd930vwTWz7cJrsfk2jc0Wv6KLWc+4i6I7mXXfvSaYruQProbvvkT5PxiZz15+TYsHuVy2lJQbVpmfhGzl6Tx3x92UFLmZHyPaC4bmsDAxPDGK1xXXgbFeXbHuOxdkL7YDuK272dbDCHx4B9hS3BUvqYcvv8rLHzGrp+Y+jokjaj9fQ7thDfPtS2N4bfDwCvtdNOTHaPIToP/nAKB7eDqTyAo+vhjjmTD8/0gqIP90E865bctk6xd8NEdtvXSaaxtSYTEnlxcql60+0ipGpSUOfl6037eXp7Oj1sPUm4MfeNCuHxoAmO6Rdevq6hBARTakhre/nb/6dps/xbevdGOT4x5CEbdaz/kneX2wz97FxzabktwrJ4NZUX2mL4XQ0gjTgf9+SU7aD34Rjj9qePXcXx0DyyfAWf8zXZZBUQcf44jOfD5I7D6LXvfN8S2lMI62r0xIpPtT4cPFGTa2lMFBytuB2wXVFRXGHkP+Ic33t/WRmhSUOoY63fnMm95Oh+s3kPOkVJC/b0YkhTOuO5RDE6KID7cH2/PZjhDJm+fXXWdvhgiu9m1BrkZdhziKPGwH7Cn3Am9zoWAOnY31VV5Gbw6ETLXw7RZduHfUQe22CmoncbAuEegw8CaWyelRbYrKn2p7VrL3wN5e6Eop5Y3F7t+xMvfJgrfUNtFNexm7YaqB00Kqs0rdxpWpWXz7ZZMvtiwn22Zh/FyCP3jQxnVJYpxPaKJDfUj2M+reVcyBdud9O1TsGmB/ZYcEGW7c4Lb2xlOIXHgEwRhSeAX6poY9q2DV8bbRX6Xzvu1G+n1cyBjqZ162nXSiae8Osttq6G00O5zUZxvWwO56TZBgG1F+AaDT7CtP+UdYJPCvnWw6DnI2mb/1rGP2IF7hw6PnogmBdUmHSoo4futmXyzKZMfth0k90gpHgLJ0UEM7RTOhB7R9OoQQoifF571HUBuDopy7Yeqwws8vCp+NuE0zy8fh0XPwoi7YexDtntr9jTofzkMvw1iejT83OWlUFYMzlLw8Kz57yvIgqXTYfmrtlspdjCM/6Mtg67JoUaaFFSbknW4mFtnrWTJjkMYINjXk96xIfSPD2VEl0i6twsi2M+r/jOJ1G+VFML00bbrZ+ob8PE9dhxj8rN2ALmpunOc5ZC1HRY9b9dilBXZ9+93MXSf/NtB++oYY6cCr3rTtljOean6NSStiCYF1WaUOw1XzljC0p2HmNizHYM7hjG8UwQxwb4E+baArqGWZvv3MPM827dfmAWjf2/XMYQnNX0sJYWQscwOhO/8AcqO2NlaXSfBgMtt66Hq+MbBVFgzG9bNtQUCxcOuIZn8LKRc2/TxNyFdp6DajOe/2sqi1CyuGZHEHeOSCfX3cu3sobau06k2Cax6027Ok3CKHdNwB29/uyCwXR/Yswp2LbS75K17G9bMsnH1usBumrR2DuxdDYhdJDj4RkgcbmdVLXzOztg6UQujDdCkoFq0bzdn8sI3qYxKjuT6kR0JC6i+5LVqRCIw4XE7BpB0qv2AdXdfvn+4LUCYMNxukJS1ze6St+M7+OkFwEBoIvSdBp3H2RIcQe3tYHZJgS1kuOxVGHG7e/+OZkC7j1SLlX6okMn/XEiInxfPXNSXwUnVzI1XrnMw1a6fiBvcPKuglpfZbVQzt9iV1B3621lbPsG/TWJOJ7w4yE6XvXVJ3QoGtkB17T7SUTfVIhWVlnPzzBWUlju5Z2JXBiboYqYmF94J2jfjstgOTzudNXEY9JsGUd1si+LYVo2Hh53amr8HFv/HPbE2I5oUVIv05EcbWb87j5tGd2ZSr3Y6mOwOHh417lDX4vS+wK6/WDYdCg+5Oxq30qSgWpx3VmQwa0kak/u254phifh6aTlmdZJEYPxjdt3DohfcHY1baVJQLcrmfXk88v46erYP5vZxyYTrwLJqLN0m2e6wla/Z7UTbKJ19pJqVhdsO8viHGygtd+Ln5cDPy4GvlwM/b3tblZaNn5eDe05LpmtM9fspK9UgIjDhCbtJ0MJ/2OJ+bZC2FFSz8c3m/Vz72jLyi0oJ9/fG00MoKCljX14RW/fns2znITBw14SujO4WrWsRVOPrPMZOa109E3IyGv/8+9bBvGtg96rGP3cj0ZaCahY+W7+P22atJDbMj0fP6sHgpHAEwWCnTB+dOW0Af2+HlqtQrjP+cfjf6fD93+xuc4315WPdfLt/d1mR3XFv2iy7ELCZcem/LBGZJCJbRCRVRB6s5vl7RGSjiKwVka9FJNGV8ajm6YPVu7l15koSI/x5bHJPRneNJtTfmxB/L0L9vQn19yYswN7CA7x1YFm5VuIwW0dp/Xy7X8XJcpbDF3+Ad66zmypNfMpuvTprqt2Jr5lxWVIQEQfwEnAG0BO4RER6HnPYKiDFGNMXmA887ap4VPM0b3k6d81ZTaeoAB47uxejukY1zz0NVNsy4UkoPQJfPQE56ZCfact9lxTaSq5lxVBW8msTtiaFh+z2qD+9YBPNWc/C4Ovgmk/sQrp518CqmU3zN9WRK7uPhgCpxpgdACIyB5gCbDx6gDHm2yrHLwYud2E8qpl5a/EvPPr+enq0D+LRs3owpGOEdgup5qFDX1tUb+N79laVeNjS3t4BENPbfth3m2RLZ1Ttatq/EWZfDHm7YdA1MPQmu7Och8P+vOZTePM8W2LjSDacclvT/o01cGVSiAXSq9zPAIbWcvx1wKfVPSEiNwI3AiQkJDRWfMqNXl24kz99tJE+sSE8cmYPUpLCWub+Bqr1On86/PiM3QTIlNud7pxVfh7Jhr1rbAG+b560+1MnnlKxK50HfHQXePrAuD9An6nH70kdGg/XfAYzz4cvHrEtkXGPuH2FuCuTQnV/WbVtLRG5HEgBRlf3vDFmOjAdbO2jxgpQNa2SMidfbNzHW4vTWLwjiwHxoTx8VncGxGtCUM2QbzCMfsB2I1UmgzJbCNBZZjcDKsqDg1tg71qbIDZ/aMciACK6wOiHoOtpdie56gRGwlUf242Kfvy7TTRn/t2uFncTVyaFDCC+yv04YM+xB4nIBOARYLQxptiF8Sg32XmwgNlL05i3PJ3swlIiArw5u297rh3Zkb5xoVqiQjVf3gH2Vpv4IdC70FZbzc+E9J/t1qLdz4LYFNtaqI1vEFz+Dsy7Gpa/Als+tluMDrgcYo4dhnU9l1VJFRFPYCswHtgNLAMuNcZsqHLMAOwA8yRjzLa6nFerpLYMZeVOPl2/j1lL0vh5RxYeAn3jQhjTLZpTu0aRGO5PmL83HpoQVGtUVlKxpWg9vvGXl9md5Na/A5kbAQMxvaD3hbbkd3CHk+paahY7r4nImcBzgAOYYYx5SkSeBJYbYxaIyFdAH6Bit27SjDHn1HZOTQrNX3ZBCbfMXMnPO7KIDPRmVHIUp/WIYUBCKOGB3vh46pRSpapljO1CylgOG96Dnd9B3h5weEP8MBhxZ8WYRf01i53XjDGfAJ8c89gfq/zesL9ONVvb9udz7evL2JtTxHUjO3LJkHjah/gR4KPrJJU6IRFb3rvrROg4CvL2wfavIPUru6tc5oYGJ4W60n+pqtF8s3k/t89ehaeHB3+Y3JMLB8VpMlCqobz8IKIjhF1nxxiyUu3+0y6m/2LVSTPG8PKPO/jLJ5tJjPDn92d0Y3z3droITanG4OEBARH21gQ0KaiTUlRazsPvrePdlbsZkhTGA5O6MzAhTAeQlWqhNCmoBtt5sIB7565mZVoO5w+M5c7xySRGnGD6nlKqWdOkoOolt7CUj9btYf6KDFal5eDt6cFd45O5ekQSof664Y1SLZ0mBXVCpeVOvttygPkr0vlmcyal5YYOob5MHRTHhB7RjO4WrZVLlWolNCmoWr358y6e+WIrOUdKCfLxZGSXSMZ0i2Zstyiig301GSjVymhSUNUyxvB/X2zhpW+30y0mkMuHJXJq10g6RwUS6u+tpSmUaqU0KajjlDsNj763jtnL0hnRJYJ7JnSla7sggny93B2aUsrFNCmo3ygqLefOOav4fMN+JvWO4Y5xyXRrF6wtA6XaCE0KqlJ+USk3vLGCxTuyuCgljlvGdCYxIgBxc313pVTT0aSgADiQX8zV/1vK5n35XD+qI9eP6Ei7UD93h6WUamKaFBRpWYVcMWMJe3OLuHN8F64YlkRYgK45UKot0qTQhjmdhllL0/jLp5sAeOiM7kxNiSdQi9gp1Wbpv/42aufBAh58Zy1Ldh6iZ/tgbhrdidN7tdN1B0q1cZoU2piyciczFu3kmS+24vAQrhvZkSuHJRAfHqBF7JRSmhTaks378nhg/lrWZuQyMCGUm0Z3YnRXLVGhlPqVJoU24ODhYl7+cQevLtyJv5eD28d2sTuihfrpdFOl1G9oUmjFMrILefmHHcxZlk5JmZORyZFcOyKJEV2idAMcpVS1NCm0QqmZ+fz7ux18sHo3BhjVJZJzB3ZgTNdoLW+tlKqVJoVWZF1GLi99m8rnG/bh5enBaT1jmNK/AyO6RGrdIqVUnWhSaAVW/JLNP7/ZxndbDuDv7eC8gbGc068DQztG4Oetg8hKqbrTpNCCLd6RxT+/3sai7VkE+Xpy8eB4zhvQgf4JYfh4ajJQStWfJoUWxhjDotQsXvh6G0t3HSLEz4tLhyRwwcBY+sSF6gCyUuqkaFJoIXILS1mwdg9zl6WzbncuYf5eXD40gQsGxdKrgyYDpVTj0KTQjJWVO/l+6wHmr8jgq037KS03xIX5ceXwRC4cFEe3dkHaTaSUalSaFJqhTXvzeGdFBu+t2k1WQQlBvp6M7RbNmG7RjOkaSWSQr7YMlFIuoUmhmcg9UsqCNXt4e1ka63fn4fAQBsSHctUpiUzs1Y7E8ACdSaSUcjlNCm7kdBoW78xi7rJ0Pl2/j+IyJwnh/lw1LJHxPWPonxBKkI+nlqJQSjUZTQpukJlXxNzl6by9PJ30Q0fw93YwKjmKCT2iGNstmsggX90TWSnlFpoUmogxhp93ZDFzcRqfb9hHmdPQq0Mwt42NZWKvGLrGBGm1UqWU22lScLHcI6W8uzKDtxb/wvYDBQT6ODi9dzsm9YxhRHIUYf5e2j2klGo2NCm4gDGGNRm5zF6SxoI1ezhSWk5ydCC3ju3MpF7t6KpTSZVSzZQmhUaUe6SU91ftZvbSNDbvy8fH04ORXSKZ1DuGMd1iiAz01laBUqpZ06RwkowxLNuVzZylaXy8bi/FZU46RQZww6iOnN4zht5xoTpWoJRqMVyaFERkEvA84ABeMcb89ZjnfYA3gEFAFjDNGLPLlTGdjLJyJ2mHCtmWeZjUituqtGx2ZRXi5+VgdNcoTusZw+huUUQF+mirQCnV4rgsKYiIA3gJOA3IAJaJyAJjzMYqh10HZBtjuojIxcDfgGmuiqk2xhhyCkvJzC/mQH4xmflFFT+L2ZdbxLbMfHYeLKC03FS+JiLAm/hwf27u055JvWLo3j5YxwqUUi2aK1sKQ4BUY8wOABGZA0wBqiaFKcDjFb/PB14UETHGGBrZqwt38swXWzAGDPb0Vd+lzGkodx7/tj6eHoQHeBMb6sfkvu2JC/MnPsyP7u2D6RDqR5CvpyYCpVSr4cqkEAukV7mfAQyt6RhjTJmI5AIRwMGqB4nIjcCNFXcPi8iWBkUkjnbi6ZVXt4ONwRinMU4nTqcT4yxv0Hu2HJEcc91VJb02NdNrU73meF0S63KQK5NCdR3qx34Vr8sxGGOmA9NPOiCR5c6SspSTPU9rJCLLjTF6baqh16Zmem2q15KviytLbWYA8VXuxwF7ajpGRDyBEOCQC2NSSilVC1cmhWVAsoh0FBFv4GJgwTHHLACuqvj9QuAbV4wnKKWUqhuXdR9VjBHcBnyOnZI6wxizQUSeBJYbYxYArwJvikgqtoVwsaviqXDSXVCtmF6bmum1qZlem+q12Osi+sVcKaXUUbp9l1JKqUqaFJRSSlVqM0lBRCaJyBYRSRWRB90djzuJyAwRyRSR9VUeCxeRL0VkW8XPMHfG6A4iEi8i34rIJhHZICJ3Vjyu10bEV0SWisiaimvzRMXjHUVkScW1ebtiUkmbJCIOEVklIh9V3G+R16ZNJIUqJTfOAHoCl4hIT/dG5VavAZOOeexB4GtjTDLwdcX9tqYMuNcY0wMYBtxa8f+JXhsoBsYZY/oB/YFJIjIMW5rm2Yprk40tXdNW3QlsqnK/RV6bNpEUqFJywxhTAhwtudEmGWN+4Pj1IFOA1yt+fx04t0mDagaMMXuNMSsrfs/H/gOPRa8Nxjpccder4maAcdgSNdBGrw2AiMQBZwGvVNwXWui1aStJobqSG7FuiqW5ijHG7AX74QhEuzketxKRJGAAsAS9NkBl98hqIBP4EtgO5BhjyioOacv/rp4DHgCcFfcjaKHXpq0khTqV01AKQEQCgXeAu4wxdayV1foZY8qNMf2x1QmGAD2qO6xpo3I/EZkMZBpjVlR9uJpDW8S1aSub7NSl5EZbt19E2htj9opIe+y3wTZHRLywCWGmMebdiof12lRhjMkRke+w4y6hIuJZ8Y24rf67GgGcIyJnAr5AMLbl0CKvTVtpKdSl5EZbV7XkyFXAB26MxS0q+oFfBTYZY/5R5Sm9NiJRIhJa8bsfMAE75vIttkQNtNFrY4x5yBgTZ4xJwn62fGOMuYwWem3azIrmiiz+HL+W3HjKzSG5jYjMBsZgy/vuBx4D3gfmAglAGjDVGNOmihOKyEjgR2Adv/YNP4wdV2jr16YvdrDUgf0yOdcY86SIdMJO3AgHVgGXG2OK3Repe4nIGOA+Y8zklnpt2kxSUEopdWJtpftIKaVUHWhSUEopVUmTglJKqUqaFJRSSlXSpKCUUqqSJgXV5ohIqIjcUofjkkTk0joet76Gx2t8vYh0EJH5NT1f27mVchVNCqotCgVOmBSAJOCESaEhr69Y6brHGHNhdc8r5S6aFFRb9Fegs4isFpG/i/V3EVkvIutEZFqV40ZVHHd3xbf2H0VkZcXtlDq8T9XXXy0i80TkQ+CLqq2ABpxbKZdoK7WPlKrqQaB3RXE3ROQC7B4B/bCrvJeJyA8Vx91njJlccZw/cJoxpkhEkoHZQMoJ3qfq668GhgN9jTGHKiqxHpVZz3Mr5RKaFJSCkcBsY0w5tvjd98Bg4NgKqV7AiyLSHygHujbgvb6soURGY5xbqZOmSUGp6sscV+dubK2oftiu16IGvFeBC8+t1EnTMQXVFuUDQVXu/wBMq9hEJgo4FVhazXEhwF5jjBO4Alscrj7vU5v6nlspl9CWgmpzjDFZIrKoYpD3U+yOWcOBNdiNUB4wxuwTkSygTETWYPe1/hfwjohMxZZFrulb/1Frj3l9di3H1vfcSrmEVklVSilVSbuPlFJKVdKkoJRSqpImBaWUUpU0KSillKqkSUEppVQlTQpKKaUqaVJQSilV6f8D7lEnlQJkRAYAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "#df.plot(x='total trial',y=['DLS reliability', 'HPC reliability'])\n",
    "plt.figure()\n",
    "sns.lineplot(data=df, x='total trial', y='DLS reliability')\n",
    "sns.lineplot(data=df, x='total trial', y='HPC reliability')\n",
    "\n",
    "plt.ylim([0,1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x1b8590b588>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VMX6wPHvbMmm9wQSktCkpkDoTaRJF7g0pQkqYC+gV8Sf3As2LIgKggqIWBBQEAGVIk2K9GKoAYQEAoRU0ttm5/fHwVxKEorZ7CbM53n2kd2dc/bdmOy7c2bmHSGlRFEURVEAdLYOQFEURbEfKikoiqIoRVRSUBRFUYqopKAoiqIUUUlBURRFKaKSgqIoilJEJQVFURSliEoKiqIoShGVFBRFUZQiBlsHcLt8fX1ljRo1bB2GoihKhbJv374kKaXfzdpVuKRQo0YN9u7da+swFEVRKhQhROyttFOXjxRFUZQiKikoiqIoRVRSUBRFUYpUuDEF5e5SUFBAXFwcubm5tg6lUnF0dCQoKAij0WjrUBQ7o5KCYtfi4uJwc3OjRo0aCCFsHU6lIKUkOTmZuLg4atasaetwFDtj1ctHQojuQohoIcQpIcQrxTwfIoTYJIQ4IISIEkL0tGY8SsWTm5uLj4+PSghlSAiBj4+P6n0pxbJaUhBC6IFZQA+gITBECNHwumavAd9LKSOBh4DZ1opHqbhUQih76meqlMSaPYUWwCkp5WkpZT6wGOh7XRsJuF/5twdwwVrBHLmQxsJtxzmXkm2tl1AURanwrJkUqgHnrrofd+Wxq00Ghgsh4oBfgWetFUzChtnc91sverz3C50/2My7q4+xNyaFQovao1opnV6vp3HjxoSFhTFo0CCys7UvFjk5Odx3330UFhZisVh47rnnCAsLIzw8nObNm3PmzBlAW3AZHh5OREQE9913H7Gx2hqi/Px82rdvj9lsttl7U5TrWTMpFNc/vf4TeAiwQEoZBPQEvhFC3BCTEGKsEGKvEGJvYmLiHQXTsWNXqolk5geuwNnBwJytZxj42Q4iX1/Hc4sOsPLPC6Rm5d/RuZXKzcnJiYMHD3L48GEcHBz47LPPAJg/fz79+/dHr9ezZMkSLly4QFRUFIcOHWL58uV4enoWnWPTpk1ERUXRoUMH3nzzTQAcHBzo3LkzS5Ysscn7UpTiWDMpxAHBV90P4sbLQ48B3wNIKXcAjoDv9SeSUs6RUjaTUjbz87tp6Y7iBTVFRA6jReovrOprYNuEjvxfz/o0qe7F5ugEnlt0gCZv/MYDM7fx4W/R7ItNVb0I5Qb33nsvp06dAmDhwoX07atdEb148SIBAQHodNqfVFBQEF5eXjcc37p1a86fP190v1+/fixcuLAcIleUW2PNKal7gDpCiJrAebSB5KHXtTkLdAYWCCEaoCWFO+sK3Iqub8Kxn+HncQQ8sZ0x7Wszpn1tcgsK2RydwOboRPafTWXmxlN8vOEUbo4G2t7jS4e6foQHeVDH3w0Hg1rvZytTVh3h6IX0Mj1nw0B3/vtA6C21NZvNrF69mu7du5Ofn8/p06f5uzjj4MGDadeuHVu3bqVz584MHz6cyMjIG86xZs0a+vXrV3Q/LCyMPXv2lMl7UZSyYLWkIKU0CyGeAdYCemC+lPKIEOJ1YK+UciXwIjBXCDEO7dLSKCml9b6eO3lpiWHlM/DHDGj3AgCORj3dwwLoHhaAlJJzqTmsPnSBXWdS2X0mmTWH4wHQ6wS1fF0IreZBaIA7DQLcaRjojreLg9VCVmwvJyeHxo0bA1pP4bHHHiMpKemay0NBQUFER0ezceNGNm7cSOfOnfnhhx/o3LkzAB07duTSpUv4+/sXXT4CbbzCwcGBjIwM3NzcyveNKUoxhDU/g62hWbNm8h9VSbVYYF5nSD4Fz+wDN/9SmxeYC9l3NpW9Man8lZhFTFIWsclZpGQXFLVpXcuHUW1r0Lm+Pwa96kmUpWPHjtGgQQObxuDq6kpmZuY1j6WmphIZGUlMTEyxx0ybNo3Y2FhmzpxZVNnXxcWFUaNGUa1aNaZPn17U1tfXl4sXL5b76mJ7+Nkq5UcIsU9K2exm7e6+Fc06HfT9BD5rBz+/AEO+K7W50aCnVS1fWtX631BHnrmQ2OQs9semsi/2MhuOJ/D4N/vwczMxrGUIQ1uE4O/uaO13otiQl5cXhYWF5Obm4ujoyP79+6latSqBgYFYLBaioqKIiIi45hgnJyc++ugjwsPDee211/D29iY5ORk/Pz9VbkKxG3fn19oqodB8DET/Aqc23vbhJoOeulXceahFdd4f1Ig/JnTkzX6hBHo48tH6k7R+ZyOPf7OXP/5KoqL1xJRb17VrV7Zt2wZAQkICDzzwAGFhYURERGAwGHjmmWduOCYgIIAhQ4Ywa9YsQJuV1LOnWsiv2I+77/LR3/IyYEYkmNzh6V2gL5tvalHnLvPFtjNsOH6JzLxCGgV58N8+oTQJuXEminJz9nyJ48CBA0yfPp1vvvnmjs/Rv39/pk6dSr169cowsltjzz9bpezd6uWju7OnAGBygx7vQspf8Pt7ZXbaiGBPPh4SyY6JnXmu0z3EJmfTf/YfjPl6L7HJWWX2OortRUZG0rFjRwoLC+/o+Pz8fPr162eThKAoJbl7ewoAUsKC3nBhHzy1G7xCyua8V0nLKeDd1cdYtv88hRbJkBbBjL+/Hl5qxtItUd9mrUf9bO8uqqdwK4SAPjOg0Aw/P2+Vl/BwMvJ2/wjWjWtPx/r+fLvrLG3f3cgnm06SkKGqVCqKYl/uvtlH1/OpDW2ehW3T4c8l0OhBq7xMdR8X5j7cjANnU3nj56NMW3uCaWtPEOjhSOMQT5pV9yIyxIvQQA+1QE5RFJtRSQGgwytwbBWs/jfUaAce19ftKzuRIV78+FRbtp5I5Ldjl4iOz2DX6RR+PaQtkDPqBQ0D3OnSsAqDmgZT1UNNbVUUpfyopABgMMGgr2BuB/hhFDy2Tru0ZEX31vXj3rp+SCnJLbDwV2IGW08mceR8Osfi0/lg3Qk+/O0EbWr7MqRFMPc3rKp6EIqiWJ36lPlb1VDoNAnidsOWaeX2skIInBz0hFXz5MkO9/DJsCaseaE9y59qQ9/GgRy5kMbT3x2g+Vvr+c+KwxyPL9vaP8rNubq6XnN/wYIFRWsQJk+eTLVq1YpKa69cubKo3ddff01YWBihoaE0bNiQadPu/Pdq8+bN9O7dG4CVK1fyzjvvlNp+8uTJ/+j1lLuX6ilcrc2zEL0atrwHde6HwMY2CcOo1xEZoo0xZOWZWfXnBX48cJ6Fu87y9Y5YmoR48kqP+rSo6WOT+JRrjRs3jpdeeoljx45x7733kpCQwNq1a/noo49Yt24dgYGB5Obm3nQ9g9lsxmC4+Z9knz596NOnT1mFryjXUD2FqwkBA+eDwQmWPgoFtp8d5GIy8FCLEJaMbcWG8fcxsk0N/krMZPDnOxk6dydRcZdtHaJyRYMGDTAYDCQlJTF16lSmTZtGYGAgAI6OjowZM+aGY0aNGsX48ePp2LEjEyZMICsri0cffZTmzZsTGRnJihUrbjjm6p7KqlWraNmyJZGRkXTp0oVLly4Vtfvzzz/p1KkTderUYe7cuVZ610plo3oK13MPgD4fa2MLv76k1UmyA0IIavi6MKVPKM93vocZG06xdN85+nyynU71/ZnQvT71qlbyKpurX4H4Q2V7zqrh0KP0SzFXV0kFSElJKfab+q5du9DpdPj5+XH48GGaNm16SyGcOHGC9evXo9frefXVV+nUqRPz58/n8uXLtGjRgi5dupR4bLt27di5cydCCObNm8d7773HBx98AEBUVBQ7d+4kKyuLyMhIevXqVZSkFKUkKikUJ/RfcPwXOPAt1O8J9eyrNo23i4nJfUJ5umNtpq87wfKD5+n+0RZ6hFdlXJe61KlSyZNDOft757W/LViwgKsXUH744Yd8++23uLm5sWTJEsRtTlIYNGgQer0egHXr1rFy5cqi8YDc3FzOnj1b4rFxcXE8+OCDXLx4kfz8fGrWrFn0XN++fXFycsLJyYmOHTuye/fua/ZyUJTiqKRQkt4fQewfsOJZeLoFuNywIZzN+bk5MnVABM91qcN7a6L5Jeoivx6Kp3GwJw+3rk7P8AAcjXpbh1l2bvKN3lb+HlO4WmhoKPv27aNTp043Pd7FxaXo31JKli1bdkPpi6svC13t2WefZfz48fTp04fNmzczefLkoueuT063m6yUu5MaUyiJyRUGfgk5KbBstFYSw04FeDjx4YON2fRSBx5uXZ34tFzGf/8nzd/UZiydvJRh6xDvOhMnTuTll18mPl5bf5KXl8eMGTNuely3bt2YOXNmUXXdAwcOlNo+LS2NatW0dTVfffXVNc+tWLGC3NxckpOT2bx5M82bN7+Tt6LcZayaFIQQ3YUQ0UKIU0KIV4p5/kMhxMErtxNCCPsaNQ1pCW1fgNObYPEwyLXv6aDVvJx4vW8YW1/uwIyHGhMe5MHCXWe5/8Mt9P1kG2uPxNs6xLtGz549efrpp+nSpQuhoaE0bdoUs9l80+MmTZpEQUEBERERhIWFMWnSpFLbT548mUGDBnHvvffi63ttb7ZFixb06tWLVq1aMWnSJDWeoNwSqxXEE0LogRPA/UAc2p7NQ6SUR0to/ywQKaV8tLTzlmlBvFthscCaCbB7LngEweBvoNqNe+/aq5jkLOZvO8PaI/FcSs+ja8MqvDsgosIU5FNF26xH/WzvLvZQEK8FcEpKeVpKmQ8sBvqW0n4IsMiK8dwZnQ56vAcDvoC8dJjfFXZ+ZteXk65Ww8eF1/uGsfHFDoxqU50NxxPoOG0zvx66aOvQFEWxQ9ZMCtWAc1fdj7vy2A2EENWBmkCx26AJIcYKIfYKIfYmJiaWeaA3JQSED4DRG8GvntZzWDwMctPKP5Y75GIyMLlPGIvHtsLDychTC/fz5Lf7uJydb+vQFEWxI9ZMCsVNdSjp6/VDwFIpZbG7lUgp50gpm0kpm/n5+ZVZgLfN9x549DdoMgqif4VP20LcPtvFcwea1/BmzQvtGdYyhLVH4uk0bTNrDqteg6IoGmsmhTgg+Kr7QcCFEto+hD1eOiqOgxM88BH863PtctKX3eHoypsfZ0ecHPS89a9wvhvdCmeTgSe+3c/ziw+Qm3/zgVBFUSo3ayaFPUAdIURNIYQD2gf/DZ+eQoh6gBeww4qxlC0htH0XHv0NXKvA8icqXI8BoFVtH9a8cC8Dmwax4uAFHvhkO+dS1JahinI3s1pSkFKagWeAtcAx4Hsp5REhxOtCiKtrBAwBFsuKti8ogH89GLYM9AZYPAQun7v5MXbG1WRk2qBGvD8wgnOp2fSasZ0tJ2wwbqMoil2w6joFKeWvUsq6UsraUsq3rjz2HynlyqvaTJZS3rCGocLwr6dNU81JgYUDIS/T1hHdkUHNglnyeGucTXoe+XIPszadpCLmaWvQ6/U0btyY0NBQGjVqxPTp07FYLMC1Ja2v9vPPPxMZGUmjRo1o2LAhn3/++R2/fkxMDGFhYQDs3buX5557rtT2VxfMU5TbpcpclIVa90Hvj2HFU7BkOAxfBrqKV16iUZAnPz/blrFf7+f9tSeIikvjo8GNcTLd3b8mV9c+SkhIYOjQoaSlpTFlypRi2xcUFDB27Fh2795NUFAQeXl5xMTElPoat1o2u1mzZjRrdtOp5opyx1SZi7ISOQzufUlb/fzLSzdvb6d8XR1ZMrbVldlJl+j9yTbOJFXM3o81+Pv7M2fOHD755JMSe1IZGRmYzWZ8fLT9Lkwm0w21jEBbjTx27Fi6du3Kww8/TGFhIf/+979p3rw5ERERxfYuru6Z7N69mzZt2hAZGUmbNm2Ijo4uanfu3Dm6d+9OvXr1SkxeilKcu/srYFnr9BqknIZ987Xpq62ftnVEd8Ro0PFmvzDCqrkzZdVReny8lcHNgnm6wz1UseGe0e/ufpfjKcfL9Jz1veszocWE2zqmVq1aWCwWEhISin3e29ubPn36UL16dTp37kzv3r0ZMmQIOt2N38H27dvHtm3bcHJyYs6cOXh4eLBnzx7y8vJo27YtXbt2LbGQXf369dmyZQsGg4H169fz6quvsmzZMkBLGIcPH8bZ2ZnmzZvTq1cv1cNQbolKCmVJCG2qato5WDcJvGpqpbcrICEEQ1pUp0FVd95efZxvdsSyaPdZ/hVZjWc71iHYx9nWIdrUzcZb5s2bx6FDh1i/fj3Tpk3jt99+Y8GCBTe069OnD05OToBWNjsqKoqlS5cCWrG7kydPUrdu3WJfIy0tjZEjR3Ly5EmEEBQUFBQ9d//99xf1VPr378+2bdtUUlBuiUoKZc3gAEN/gDnt4cfR8Nh6qNLQ1lHdscYhXnzzWAv2nknh862nWbb/PMv2nadnRADPd7qHe8px74bb/UZvLadPn0av1+Pv78+xY8dKbBceHk54eDgjRoygZs2axSaF68tmz5w5k27dul3TpqTxiEmTJtGxY0eWL19OTEwMHTp0KHpOlc1W7pQaU7AGZy8YsUIrprf6ZVtH84+ZDHra1vHjy1Et+OmpNtzfsAprD8dz/4dbePLbfWTm3T2L3hITE3niiSd45plnSvygzczMZPPmzUX3Dx48SPXq1W967m7duvHpp58WfeM/ceIEWVklrxu5umz29Qnnt99+IyUlhZycHH766Sfatm1709dXFFA9BevxqQUtn4DtH8KZrVDzXltH9I/pdYLwIE8+Hd6EmORsZmw4yYqD5zken8HCx1oS6OVk6xCt4u/tOAsKCjAYDIwYMYLx48cXPb9hwwaCgoKK7i9atIj33nuPxx9/HCcnJ1xcXIrtJVxv9OjRxMTE0KRJE6SU+Pn58dNPP5XY/uWXX2bkyJFMnz79hs182rVrx4gRIzh16hRDhw5Vl46UW2a10tnWUu6ls/+JnMvwYSj4N4TH1mljDpXM6kMXGff9QVwcDHz1aHPCqnmW6flVeWfrUT/bu4s9lM5WnDyhzbMQtxtOrrN1NFbRIzyAxWNaIYFBn+1k/bHit41UFKViUEnB2lo/A46esOktbYyhEmoc4sWKp9vg725i7Nd7+fqPGFuHpCjKHVJJwdpMrtBuHFz8E46usHU0VhPs7cLKp9sSEeTJf1Ye4fVVR1SZDEWpgFRSKA8tnwAXP/j9HSisvDN1PJwd+P7xVvQIq8r87TE8PH83vx29pDbyUZQKRM0+Kg9GR2j/b2166p+LoclwW0dkNQ4GPbOHNeG9NceZt+0MW08mAVDbz4VmNbxpU9uH1rV98Hez3cpoRVFKpmYflRdzPsxoBHpHeHqXtsitkkvOzOP3Ewn88VcKRy+k81diJnlmbVyllq8Lnw1vSt2qpS9+UzNkrEf9bO8uavaRvTE4wH2vQOpp2LfA1tGUCx9XE/2bBDNtUCN+fKoNm168jw8HN2JwsyDi03MZ+eVu4tNzbB3mHalRowZJSUn/uI2i2BurJgUhRHchRLQQ4pQQotg9E4QQg4UQR4UQR4QQ31kzHpuLHA5eNeCPjyE/29bRlCtHo55AL2f+1SSIqf0jmDkkksSMPEbO30NWbsHNT6AoSrmwWlIQQuiBWUAPoCEwRAjR8Lo2dYCJQFspZSjwgrXisQs6PXT8P0iLg91zbB2Nzeh1gs4NqvBmvzCi4zMY++0+zGb7na7br18/mjZtSmhoKHPmXPv/LSYmhvr16zNy5EgiIiIYOHAg2dn/S/gzZ86kSZMmhIeHc/y4VuG1tJLXimJr1hxobgGcklKeBhBCLAb6AkevajMGmCWlTAWQUhZfi7gyCRsIW96HnbOh2aPg6G7riGzmoRYhnE/NYeamU7yy/BDvD4wotXBb/Ntvk3esbEtnmxrUp+qrr5baZv78+Xh7e5OTk0Pz5s0ZMGDANc9HR0fzxRdf0LZtWx599FFmz57NSy9pe2r4+vqyf/9+Zs+ezbRp05g3b16pJa8VxdasmRSqAVdvWhwHtLyuTV0AIcR2QA9MllKusWJMtqfTQaf/wPfD4aMwcKsKrgHgEQjuQeARBJ4hENJam7VUyY3vWpdzqdks3RdHkJcTL3Qpvky0Lc2YMYPly5cD2uY1J0+evOb54ODgooJzw4cPZ8aMGUVJoX///gA0bdqUH3/8ESi95LWi2Jo1k0JxX/mun+pkAOoAHYAgYKsQIkxKefmaEwkxFhgLEBISUvaRlrcGvbXEcOZ3yEmF5JMQtwsKrhp0DWisbevp4mu7OMuBEIJpgxoRn57LxxtOUs3TiUHNgotte7Nv9NawefNm1q9fz44dO3B2dqZDhw7k5uZe06a0MtUmkwnQ9nk2m7U1KqWVvFYUW7NmUogDrv7rDgIuFNNmp5SyADgjhIhGSxJ7rm4kpZwDzAFtSqrVIi4vQkDb56HJCC0RFGRrt8xkSI+DS1GwdwF8OwCGLQVXP1tHbFUGvY4vHm5Ov9nb+b/lh6nq7si9de3jPaelpeHl5YWzszPHjx9n586dN7Q5e/YsO3bsoHXr1ixatIh27drd9JwllbxWFFuz5uyjPUAdIURNIYQD8BCw8ro2PwEdAYQQvmiXk05bMSb7oTeAqz94VQf/BlCtKdTrCs0ege7vQef/aKUxvhsEWYm2jtbqXBwNfPNYCzydjTz+7T7+NWs7gz/fQVJmHjFJWcQmZ3E2JZsLl3MwF5bfoHT37t0xm81EREQwadIkWrVqdUObBg0a8NVXXxEREUFKSgpPPvlkqed8+eWXmThxIm3btqWwsNBaoSvKHbHq4jUhRE/gI7TxgvlSyreEEK8De6WUK4XWz/4A6A4UAm9JKReXds4Ku3jtdkkJW6ZphfQCI2HoEi2JVHLH49N5bflh0nIKMFsk/2nnQdXqtQHtR1JokTg76Knl52IXu4nFxMTQu3dvDh8+bOtQbptavHZ3udXFa1YtcyGl/BX49brH/nPVvyUw/spNuZoQcO+LIC2w+W347sG7IjHUr+rOt6NbknVlN7eLsX9Rx9+16PnkrHwupeeSlJmHnyqVoShlTq1otmc6HbR/Cdq/DBf2w6KHIKPy71fgaNTj42rCx9WEXicw6HVFN383E84Oei6l55FXYPtLLzVq1KiQvQRFKYlKCvZOp4cOr0C78XB+HyweAhnxto7KZoQQBHs7A3A2JVuV51aUMqaSQkWg00PHV6HtC1piWDIcspJtHZXNmAx6qno4klNQSEJGnq3DUZRKRSWFikJv1EpktHoa4vbA9w9Dbrqto7IZHxcHXEwGEjLyyMmvvHtUKEp5U0mhIjE4QJf/QvPRELsNfnjk2gVvdxEhBCFezuiAcyk5WCzqMpJS+WQXZLPr4i5mH5zN2HVjWR+73uqvqTbZqWgMJuj2trY/w4GvYdkYGDj/rtif4XpGg44ATyfiUrOJT88l0NOpzF/jdqecLliwgK5duxIYGFjmsSiVW0FhAecyzxGVGMX+S/uJSozidNpp5JVCEP7O/lzMumj1OFRSqIgMJug5DQrzIGoJrHga+n0Ger2tIyt3Xs5G0nOMJGfm4+FkxMVk21/pBQsWEBYWppKCcoMCSwGXcy+TmJNIXEYcsemxnM04y7mMc8RlxJGYnYgFbWGmo96RYLdgulTvQh2vOtT2qE1Vl6oEuxZfAqYsqaRQURlN0OcTKMyHQ9+DyRV6TdfWN9xFhBAEeTkRfSmDc6nZ3OPnikFftldFzWYzI0eO5MCBA9StW5evv/6aY8eOMX78eDIzM/H19WXBggVs376dvXv3MmzYMJycnNixYwfvv/8+q1atIicnhzZt2vD555/bxaI75Z9Lz0/ncu5lLudpt9Tc1Gv+m5KbQkpuCqm5qaTmppJRkHHDOVyNrng5ehHgEkC4bzhVnKtQy7MWdbzq4G3yxtXBFSeDE44GR3SifK72q+04KzpzPvwwCqJ/0Qahu79t64jK1NWrbrd+f4Kkc5nFtjNbLOQVaN+ydDqBTgj0OoFeB6LY2owa32BX7h1ccmXWmJgYatasybZt24pKYzdo0IDly5ezYsUK/Pz8WLJkCWvXrmX+/Pl06NCBadOm0ayZtnA0JSUFb29vAEaMGMHgwYN54IEH7uhnUdbUiuY7k1+Yzzu73+GHEz+U2MbJ4ISr0VW7ObjiZnTDzeSGu4M7niZP/J39CXELwdvRGxcHF5wMTjjoHTDqjJj0JqskALtY0ayUA4MDDFoAi4fCzllgzoWub4CDi60jK1cGnQ5hFJgtFiwWLUmYr6xtE0JLDka9Dt0dfEu/vjT222+/zeHDh7n//vsBKCwsJCAgoNhjN23axHvvvUd2djYpKSmEhobaTVJQbl9CdgIvbHqBQ0mHaBPQhlqetXBzcMPV6Iq7gzvejt54O3njqHfEweCASWfCoDMU3fRCj16nxyAMdttjVEmhMjA4wEPfadNU934BR1do6xqajtLWOFQSpX2j/5uUEovUkkJWnpmsvEJyCgrJM1tAgo+rA1XcHdHrbv0P8vo/Xjc3N0JDQ9mxY0epx+Xm5vLUU0+xd+9egoODmTx58g1lt5WKY/+l/YzbPI6sgixGNhzJgLoDqOpSFYPQPvDt9UP+dqkpqZXF34mh/3xtN7dfxsPsVnBira0jK1fiymUjk0GPt4uJIC8navu5UsffFVeTnqTMPE5cyiAtO/+Wz/l3aWyARYsW0apVKxITE4seKygo4MiRI4CWMDIytGvHfycAX19fMjMzWbp0aVm+VeUqBZYC8gtv/f/p7ZBS8t2x73h07aPohZ6Xmr7EqNBR1PSoiZPBCaPeWGkSAqikULnodBAxAB7fAh1ehawk+G4wLOgNFw7aOjqb+DtJOBr11PB1IeRKiYzYlGxOJ2aSZ755/aTrS2M/++yzLF26lAkTJtCoUSMaN27MH3/8AcCoUaN44oknaNy4MSaTiTFjxhAeHk6/fv1o3ry5Vd/r3UpKyRO/PUHXpV35/dzvZXruXHMur257lam7p1LPqx6TWk7igXsewNe58m5+pQaaKysp4fJZ+P1dOLQUpBmaj4Vub1WoS0rWGAw1F1q4lJ5HSnY+AvBzM+HnZrqj8YaKrLIMNK/6axWvbnsVR70jBZYCHgt7jKcaP4Vx1/E5AAAgAElEQVT+H/yep+Wl8Wfin8zYP4Po1Gi6Vu/KI2GPUM+rHka9sQyjLz9qoPluJ4S2gc8DH0PkCPjtP7DrU/CuCS0ft3V0NmXQ6wj0dMTL2ciFtBwupeeSkpWPr6sJHxcHdLcx3qDYVkZ+BtP2TqO6W3UmtpzIrIOzmHNoDlFJUbzX/j28HL1ueg6LtHDm8hn2JuzlYMJBohKjOJtxFtBmEY0OG03/uv0Jcg2qVJeJSqKSQmWnN0L11jDkO5jfHdb/F6o2huotbR2ZTQkhcDYZqOXrSkp2PsmZeVxMyyExIw9fVwd8XU0qOVQAsw7OIjU3lTHhY2hWtRlzu87lo30f8X309wxaNYgP7vuARv6NbjguJTeFzec2s+HsBvZd2kdWQRYAzgZnqrtXp0eNHtTxqkND74aE+obi6ehZ3m/NZqyaFIQQ3YGP0XZemyelfOe650cB7wPnrzz0iZRynjVjumu5+MHgb2BeF/hpLDy2Dlyr2DqqWyKltNo3NJ1O4OtqwtPZSFp2AclZ+cSn55KYmYevqwlfVwf0uso39FbRLhsX50TqCRYdX0TrwNZ0rt4Zk96ESW9iYsuJRFaJ5K2db/HI2kd4qdlLDKk/hFOXT7H53GY2nt3IkeQjSCQeDh6E+YZRx6MOtTxrEewWjJ+zH16OXrgYXTDpTbZ+m+XOamMKQgg9cAK4H4hD27N5iJTy6FVtRgHNpJTP3Op51ZjCP3RgIax4Cup0gwe/0Upm2LEzZ87g5uaGj49PuXTdLRZJWk4BSZl55BQUohMC/ytjDpXl0oGUkuTkZDIyMqhZs6atw7kjUkpGrhnJidQTvNXuLToGd7xhwdfZtLO8uOVFjqccx8vkRWpeKgBBrkHU965P0ypNqeNZBx8nn6Ik4GiovLv52cOYQgvglJTy9JWAFgN9gaOlHmUl0mxGWv634XvRn/fff+g6HeJuqB0UOQzO7oAD38DW6XDfBG3Wkp0KCgoiLi6OxMTEcn1dKSWFZgupOQVcLJQ4GATezg5lXkLDVhwdHQkKCrJ1GHfslzO/cCDhAA/WfZDmVZsXuwI4xCOEb3t8y/R90zmafJRu3t1o5t+Muj518TB54GxwrtRJ4E5ZMylUA85ddT8OKO5C9gAhRHu0XsU4KeW5Ytr8YylffUXC+9NKbqDTYfD3wxhYDYfgIIzVqv3vFhSMsVpgpfmmSM/34eKfsG06BDSG+j1sHVGJjEajTb/NmgstzNlymo9/PYleJ5jUuyFDWoTYLB4FMvMzmbZnGiFuIQyqNwh3B/cS25oM2uWk7IJsDDoDDvq7r5rw7bJmUijuE/T6a1WrgEVSyjwhxBPAV0CnG04kxFhgLEBIyJ39QTo3bYr36NFYsrO16ZrXB5afjzkpCXNCApnb/6AwOfmadjp3d5zCw3Fq1AinRhE4hodjuFLTpsIxOmmlMeZ2gl/GgV9d8Klt66jskkGv46mO93BfPT9eWHyQiT8eYt2ReD4Y3BhvF/UBU9aScpIw6U24ObiV2Gb2wdmk5KYwOnw0NT1u7QuDs9G5rEKs9Kw5ptAamCyl7Hbl/kQAKeXUEtrrgRQppUdp5y2PMQVLfj6FaWnkx8SSHxNDQWwseX/9Rd5fpyg4F1eULAyBATg3aozXiBE4N4m0akxWcWQFLB0FwS1h6PfaSmilRDn5ZqauPs63O2PxdDLy7sAI7m9Y1dZhVRp74/fy9IanMVvMdAzpyPAGw2ns3/iaNidTTzJw1UBaVm3JG23foIpLxZgsYQ9udUzBmknBgHZJqDPa7KI9wFAp5ZGr2gRIKS9e+fe/gAlSylalndeWA83SYsF86RJZu/eQExVF/smT5B49iiUzE+fWrfAf/yJO4WE2ie2OSAlrXoVds6HpI9BlCjiVmpMVYMuJBCYsO8TFtFxGtAphSp9QdHY8LlMRbInbwrhN4/By9KKGew32J+ynwFJAHc86PFjvQfre0xeT3sQjax/heMpx3m73Nh2DO1aeS7rlwOZJ4UoQPYGP0KakzpdSviWEeB3YK6VcKYSYCvQBzEAK8KSU8nhp57S32Ufmy5dJ+vQz0pYtw5KZiUv79vi/OB7HevVsHdqtMefB1321wefgltD1LQiMBL1awlKay9n5vPj9n2w4nsADjQL4cFBjDAaVGO7E6jOrmbh1IoEugbzQ5AVaBLTgfOZ5fjz5I5vObSIxJxFXoyuR/pFsPb+Vh+o9xPNNnsfVwdXWoVcodpEUrMHeksLfzKmpJM6YSdqKFcjsbFw7d8Z//DhMtSvAtfrsFFg3CaIWg9EZWj8DLceC081Xg97NCgstTPzxEN/vi6NLA38+HdYUo0oMt+X76O95c+eb1PKoxbim42gZ0LJoRpDZYiY1J5V1Z9ex+sxqDiUeIsgtiA87fEhd75tXzFWupZKCjZiTkkj48EPSf/kVmZeHe6+e+I8bh7FaNVuHVrrsFDj2M2z/CFL+guptofN/tV7DXbj/862yWCxM+fkoX/0RS7t7fJk3shmOxrtgavMVUkqSc5M5l36O2PRYzmWc43zmeS5mXSTYLZj7q99Pq4BWmIpZDzMvah4fH/iYhj4NGd9kPE2qNCmxrlBmfibRqdHkmfNoHtAco65i1h+yJZUUbCw/Pp7EadNIX7sOpMRr8GB8n3navmcsmfMg/hDs+hwOLwOTG7R5FpqMBFc/W0dnt6SUvLvmOJ/9fprmNbxYMKo5Lo6V90Mr15zLilMrWBK9hNj0WPIt15asdjW64mHyID4rnkJZiIvRheZVmtOlehc6hXTC1ejKR/s+Yv6R+TTxb8K4puMI8w3DoFOXLK1JJQU7kXfmDAnvvU/m5s0IkwnvR0bh89ho9K52ujOalJB2HqJ/1XZyS42BWh2h2zvgX++u2wP6dny8/gQfrj9JRJAH3zzWAg+nytXDSslNYdGxRSw6voi0/DSCXIOo5VELf2d//Jz98HH0wcfRR9tX2OhEdkE2e+L38GfinxxOOky2ORuDMBDkFkRMegxtA9vyfJPnqeddr9z2H76bqaRgZ3IOHSLh/ffJ3r0Hnbs7vk8+gdewYegc7PSDIy8DLhyAvfPhyHLwuQd6fwzV29j1Cmhbm7PlL6auPk69Km4sHN0SH1f7LiNyK2LSYlhwZAGr/lpFviWfBt4N6BLShRYBLajmWg2jzohRb8SgM2DUGa/5gC+wFJBdkE1yTjK7Lu5i58WdRKdGE+YbxlONnqKmR001g6icqKRgpzK3bSdh+nTyjh5F7+OD79gxeD70EDqTHX54FJoh5TRELYEdn2iL3nq8D2H9K9SeDOXt6x0xTF55BH83R/7drS79m1TMksuJ2Ym8sfMNNp/bjF6np4l/E+6vfj9N/JsQ6Bp4R7N/8gvzySrIotBSWKk3qrFHKinYMYvFQsbatSR/+hl5J06g9/bGZ8xovIYMQedoh7VYspLh2CrY9CbkpkH7CdDuea0st1KslQfP8/bq48Sn5VK/qhsTe9Tnvnr+tg7rlh1POc7TG57mcu5l7g26l27VuxHqG4q/s7+qF1RBqaRQAVgKC0lft46Uzz4nLzoavZcX3qNH4z1sqP0lB3MexO6ANa9A4jFoNAR6f6j1HpRiJWbk8sXWMyzac460nAJa1/Lh/3o1IKyafS8Q3HB2A69seQVHgyNPRDxBl+pd8HHyUQPBFZxKChWItFhIX7eO5M8+J+/4cfSenng/+gheQ4fZ14C0lJByBn79N/y1HoJbwYPfqplJpbBYJHGp2Xyy6RQrDl4gv9BCz7AAnuhQi2qezng4GdHbyWY+UkrmH57Px/s/JsQthKcjn6Z9UHtcjHb0O6jcMZUUKiBpsZD+229acjh2DJ2rK15Dh+L9yCgMXna0kCw3HTa/rU1d9QiGUT+Dp6ocWhpzoYVj8enM2HCSjccTKbT87+/O1WTAw8mAp7MDHk5GIoI8eLFrPYzlWKY7vzCfKTumsPKvlUT6RfJM5DM09m+sqopWIiopVGDSYiHz9y0kz5lDzoEDCJMJzwED8Hl8LMYqdlIAzFKobdjz6/griWE1uKvicDeTb7awLzaFTdEJZOSYycg1k5VvJivPTHZ+IRl5ZmKTs2lR05svRzXDxWT9cZuU3BRe2PQCBxIO0L1Gdx6PeJxanrXUNNFKRiWFSkBaLGTv20fS7E/J3rULdDrce/XE79lncbCXDVL+XAI/PQm+dWHkz+CqZpTcioJCC4UWiZQg+fu/YJGSRbvO8s6a49T1d+O7Mdad1noy9STPbnyWhOwEhjcYzrAGw1Tl0UqqzJOCEKIXEAoUjYBKKV+/4wjv0N2UFP4mpST36FGSZs0mc8sWhE6Hz9ix+D4+FmG0gxlAe76AX17UNux5+Cdwuns2ObeWZfvjeGVZFP5ujiwe24pg77LfD2DT2U1M2DoBo87Ik42epM89fUrdsEap2G41KdxS/1AI8RnwIPAs2uY5g4Dq/yhC5ZYJIXAKDSVo1ifUXLYUx/Awkj75hL96P0DW7j22Dg+aPwZdJsPFA7DoIcjLLL39xSjYPgNy0sojugppQJMg5j7cjJSsfPrN2s7RC2X3s5JSMjdqLs9veh4/Jz/+0/o/DKw7UCUEBbjFnoIQIkpKGXHVf12BH6WUXa0f4rXuxp7C9aSUXF6+nMRpH1CYkoJ7nweo+uqr6D1t+A1dStjwBmz7AGp3goe+u3a6qsUCx1fBH59A3G7tsUZDoc8Mtd6hFAfPpjLqyz0UWCzMfbgZbWr/s8tzueZcJm2fxJqYNUT6R/Jc5HM08m+kCszdBcr08pEQYpeUsqUQYifQH0gGDksp6/zzUG+PSgr/U3j5MvFvTyX955/RubpSZcLLePTvb7vVs1LC6gmw+3Oo3xsGfAGWAtj7pfZYWhw4+2jPpZyGmG3wwEdawb0KuOK3vJxKyGD4vN2kZOUzsUd93JyMXErPIT4tj/j0XBLSc0nIyEMAj7Wrxcg21TEUM3PpUtYlntn4DNEp0fSo2YMx4WPUgPJdpKyTwiRgJtouarPQxsTmSSkn/dNAb5dKCjfK3rePi/+dTP6pUzg2bkTAlNdxrGejevOFhbDyafhzEQQ2gaRoyM/SBqLr94bgFuDiB87e8NUD2qWmET9BtQq4nWk5ik/LYejcXZxOyip6zMmox8PJiIeTAXcnI8mZ+ZxOyiLE25mJPevTPbRq0ReEqMQont34LFkFWQxvMJxBdQcR6BpYIctvKHemrJOCSUqZ9/e/0Qabc/9+rJTjugMfo+28Nk9K+U4J7QYCPwDNpZSlfuKrpFA8S2EhyXPnkjJ3HpacHDwffBD/8ePQu5W8AbrVmAvgx8e00hghraFeL/BvoE1ddQ8A05WaOWe2wrf9wa8ejFgBLj7lH2sFkp1nZs2Rixj1OoK8tIVvJoMOo0GHQadDByzdH8fnW06TmJFHkxBPJvVuyNn8LUzZMQU3BzfGho+lW41uqu7QXaisk8J+KWWTmz123fN6tD2a7wfi0PZoHiKlPHpdOzfgF8ABeEYlhX/GnJBA/OtvkLFhAzp3d6q89BIeA/ojyruyqTkfYv/QNujxrgXOvsVv8bn5Hdg8FRoPh97ToZjNWJTbk5SZx6yNp1iyN4ZCr1U4eG8nxLUWzzV5itbVWqsB5btUmcw+EkJUFUI0BZyEEJFCiCZXbh2Am82RawGcklKellLmA4uBvsW0ewN4D8i9WbDKzRn8/Qn6ZCYhXy3A4OfHxUmTODNwEDmHD5dzIA5Q6z6tp+BWteQ9n9uNh1od4M+FcHCRNiCt/CO+riae6RJARLMlOHhvpyClDSf2P8beo4GYhCpZoZTuZl8fuwHTgCBgOvDBlds44NWbHFsNOHfV/bgrjxURQkQCwVLKn0s7kRBirBBirxBib2Ji4k1eVgFwadGCmit+wu/f/6YgLo6YQYO5OGUKsqCg/IIQ4uYDyAYH6DMLXKvChsnaHg7KPxKdEs2QXx8iOu0Qg+s8yOsdH6dhoDdzt56ly/Tf2XT8kq1DVOzYrV4+GiClXHZbJxZiENBNSjn6yv0RQAsp5bNX7uuAjcAoKWWMEGIz8JK6fFT2zMnJXJzyOpnr1uEYGkrQ559h9LWza8rH18D3w6FKQxj+I7jYWXwVxJoza3ht+2s4GZx4LOwxutfsThXnKuQWWFi8O5aZm/4iJSufbqFVeL1vKFXcVZXbu0VZjylUBd4CAqWUPYQQDYHWUsovSjmmNTBZStntyv2JAFLKqVfuewB/AX+vdKoKpAB9SksMKincuZTFi0l462107u4Ez5qFU+NGtg7pfywW2DAFtn+kjS90eu3KE/LKJSUJ0gIGR3C7O8sw7I3fy69nfsXR4Ii7gzvuDu54mDxwc3DD3cGdTWc3Mf/IfGq61+Spxk/Rtlpb3ByunWgQn5bLO6uPsyrqAo5GHeO61OXRtjXR2UmlVsV6yjoprAa+BP5PStlICGEADkgpw0s5xoA20NwZOI820DxUSnmkhPabUT0Fq8vet4+4556nMD2Nqq+9hteDD9o6pP/Jy4LvBkHs9tLb3TcROr5SPjHZAYu0MP/wfGYemIlRZ8QiLRRYir8M2DqgNU82epIw3zCMJSwKtFgku04nM+XnoxyPz6BeFTfmjGhKdV813lCZlXVS2COlbC6EOCCljLzy2EEpZeObHNcT+AhtSup8KeVbQojXgb1SypXXtd2MSgrlouDSJc49+RR5R4/iMXAgAf/9j33UUAJIPg3bPtRWOQudVlSFK99idXqI+QMuHYJ/zYWIgbaMtFyk5aXx6rZX2RK3hab+TXmi0RPU8qxFRn4Gl3MvcznvMql5qaTlpmHUG+kQ3IEgt6BbWpCWV1DIgh0xfPTbSdwcDSwa25LafjaYwqyUi7JOCpuBAcBvUsomQohWwLtSyvv+caS3SSWFsmEpKODia6+RvmIljuFhBH36qf2MM8QfgfQLYHQEBxcwuWtrG/QO2lTX+d0gK0GryhrU1NbRWs2R5COM3zSeS9mXGFBnAI+EPkI1t2plvuBsx+lkHluwB2cHPd+NaUXdKioxVEZlnRSaoK1oDgWOAH7AQCll1D8N9HappFC2kr/5loR338Xg7U2NJYsxBgTYOiStXIa0aD2D4iRGw7zOYHKDx34DDzspI15GpJQsPbmUqbum4ubgxuPhj/PAPQ/cMD5QlvbGpjBq/h6MesHC0S1pGGjfW4Yqt69Mq6QCR4HlaOMCl4C5aOMFSgXnM2I4wZ9/TuHly8Q+PBJzcrKtQ9KmsZaUEEBbAd1/LmRcgiUjtLGISqDQUkh8VjyvbX+N13e8Th3POkxpM4VB9QZZNSEANKvuzbejW1BokQyZu4uouMtWfT3Fft1qT+F7IB1YeOWhIYCXlHKQFWMrluopWEfGxo3EPfc8DjVqUOO7hejdK8Cq163TtRlLof2h/5wKU2319OXTbL+wnQuZF7iUfYn4rHgSshNIykmiUBYiEPSq1YvR4aOp5VGrXOsTHTp/mRFf7KbQIvnq0eY0CfEut9dWrKusLx/9KaVsdLPHyoNKCtZzecVKLr7yCo6hoYR8/RV657Lf2KVMSQnLRsPhpXDfK3DfBCjvch634WTqSWYdnMXGsxuRSPRCj4fJA0+TJ54mT3wcffBx8qGOVx26Vu+Kp6NtSqEfvZjG8Hm7ySsoZP4jzWlZU9WkqgxuNSmUUHvgBgeEEK2klDuvnLwlcJN5g0pF49m3D4VpaSS8/TZxTzxJ8JzP0Tk63vxAWxEC+s6ClL9gy/vgXRsiBmnJoiAHMuO18YekE9rAdZ37oVbHkktuWMmJ1BPMOjCLjec24qh3pGNwRzqHdKaaWzU8HDxwdXDFyeCEg94Bk95k81LWDQM8WDy2JUPn7mLUl3v4YFAjeobbwViTUi5K7SkIIQ6hlck2AvWAs1fuVweOSinDyiPIq6megvUlzJxJ8qzZuHbsSLWZM9AZyvdD9LalndcGnvMzoUqYlgAyE8Ccc207twDtMlP1duXSo4hOiWb2wdlFyaBttbb0qNGDhr4NqepctcR1BPbiVEIGo77cQ1xqDoObBjGlbyhODnb+u6CUqEwuHwkhSt1yU0oZewex/SMqKZSP+DfeIHXhd7g/0JuAqVPtPzGc3Q3LHtXWNrgFaEX4XP21m4sfZKfC5rfBvRoMmK/t33Ar1+qT/wIE+NS65VCyC7J5a9dbrPxrpZYMAtvSs1ZPQn1C8Xf2t/tkcLXUrHxe+TGKtUcuUdPXmZlDIgmrpvbgrojKdEzBnqikUD4sFgsXJ0wgfdXPuPftS5WJr2Cw5XaftyIlBpJOajOXDKarbo7a7ehPsH4y+NaBQV9ps5hKYrFoi+g2valNj60SBuGDodFDpZbZiEmL4YVNL3A67TT3Bd9Hn1p9aOjTEH8X/wq75WWhRfLdzljeWXucArNk/P11GNu+FroSeltp2QXsiUnhbGo2yRl5JGXmkZSVT3JmPilZeaTlmOnasApv9QvDwVjKLDOlTKmkoPxjFrOZ8889T+bGjQhnZzx69cJnzGgcQkJsHVrJLIUlT2c158HWD+D396BaExj0NXgWs8Yh5zL8OAZOroOgFuBTG05vhoyL2gK6kNYQ8SDU7wmOnkU9jg2xG/i/7f8HwIgGI+hduzeBroH2nwzMeaAzlD4NGDh6IY2XfviToxczaFPbh+mDG1HF3ZFzKTnsOJ3ErjMp7I9NJSY5+5rjnB30uDkacDUZcHM0YJEQFZdGs+pefDGyGR7ODtZ8d8oVKikoZUIWFHD5pxWk/bScnAMHAXC9rz0+Y8bg3KTEPZbsV0EObHgDds6CGu1h0JfXVmS9GAWLh0H6ea1X0Gw0+NeDrBQ4tQ5OroWY7dr4hZMXNHkYc/uXmXloLvOPzCfELYTHGz1Ou8B2eDvZ+XROKbUB+i3vw70vwr0v3XQQPivXzDtrjrFw11ncHI3odYKUrHxA2x60tp8Ldaq4Uq+KG35uJjydjbiZjDibDDg76HF20ONg0PP1jhg+3nCSGj4ufPVoc0K8Vd0la1NJQSkzUkosWVnkHDpM6qLvyNqyFZmbi2NYGL5PPolb5062DvH25GfDr/+Gg99qW4X+6zNwdId9X8OvL2qlNdo+D3V7apea/r5MYrFATqq27/SpDRC9muSkY7xcN5LdeYm0DmjN6PDRRPhF4Giw41lbAIUFsPI5+PM7MHlAfjp0ngJtnrlpj6HQIll3JJ4ZG0/iZjJSp4or9au6EeLljLebCW9nI66ORpyMeox6UeI6ix/3nWPi8sO4mgzMH9WcRsElX57MLShk/bFLBHo6qrUTd0glBcUqZGEhBRcukPLNt6T/+iuFSUn4PPUk/s89Z+vQbk9eJvz0JBxbqV0KEgL+XAz+odDuBajeFjyqlXJ8BgdPr+PFnVNIw8LD7g3o3eFtqnvVQn+TD1Wby03TekMxW6FhP2g8FH6bBMmnoOvb0GLMTRMDQHJmHilZ+Xg6O+Bi0uNk1N/2Qrs/TiXx5ML95JstfPxQY7qGVi16TkrJgXOXWbz7LL9EXSQrvxA3RwNrX7iXQE87X0Njh1RSUKyuMCOD8y++SNaWrXgOGULV/0wq19W3/1huGnw/Ek5v0u437AeRI7Qie05eJR5mtpiZEzWHz6M+x8vBnWkJyTS9nIDo9QFEDr+lD1SbuXwOvh2gJYCmj0DjIVA1HDIvwdd9ted7TYPIh8ttIeDJS9rU1/i0XF7tWZ/ejQJZti+O7/fGEZOchYNeR6NgD8ICPfh6Ryxt6/jw1SMtKtbvmh1QSUEpF7KwkPMTJpDx8y+49exJtfffQ+jt+EPxetkp2qUkn3u0PaUDGoNDyd9CY9NjmbBlAkeSj9C0SlNGNRxFC50bzt8P1wao+86Ghn3tc2X1hYOwcBDkZ0Cb57Qk6Ffvf0ks6RR800+rQNt7BkQMLrf3kZiRyyNf7uHwhXR0AiwSavu50Lq2D53q+VO3qhu+riamrY1m3rYzTB/UiP5NK1chRGtTSUEpN1JK4t98i8sLF+LSrh3Bs2chHCrQjJLcNG3Bm889JdZPklLyw4kfeH/P++iEjsH1BjOw7kCCXIO0y0WxO2DJMG3204Av4Z6Ot7YOorxEr4Glo8DoDO1fhrrdwav6jTHGH9Z6Ennp0G+2ljju5H1kJ2uzmtwDb/mQrDwzb/1ylJSsfDrU86dpdS+qeDjiZjIU9QryzIV0/uB3cvILWftCe3zdTLcf213KLpKCEKI78DHaJjvzpJTvXPf8E8DTQCHatpxjpZRHSzunSgr2K2HGDJJnf4pTZCTB8+aid6kcM0qScpKYtH0S285vo55XPUaHjaZNUBvcHa4qGiglRK+FHx/TBqoHfwMhLW0X9NUOLoIVT4Fnda1G1D2dtEV9JTm3BxY9pH2o958D9XrcXmJIvwifNIcqofDATPCve8uHFlokGbkFuJoMGPTF91J2nE5i6Jxd9AiryqxhTdRlpFtU1qWz7yQAPTAL6AE0BIZc2dv5at9JKcOv7OD2HjDdWvEo1uf/3HP4T5xIzsGDxA4dhjk11dYh/WMbYjfwrxX/YtfFXQyoM4Cp906lS40u1yYE0D4063aFXh9A7pV1DvGHruwvbUOHlmoJwa8BdJsK9XuUnhAAgpvDoAXa9NSfntRWi9+O39+Fgkw4txNWPAkJt15lX68TeDo7lJgQ4P/bO+/4qKq8/7/PnT6ZTHqBkASQDiJSwiqIICgIdmV1XVGf1cX+uNXV9bfP47rr6vPss882yxYb4qPsimIvKNZVAREbvRMCBNKT6TP3nt8fZwgRE0pIz3m/XvOae++ce++ZA5nPPefb4JSB2cwd34/X1pTz5rp9x9Y3zRFpzwXDEmCLlHKblDIGLALOb9pASlnfZDcFlVdJ043JuupK+tz7G6Jbt7Ljkkuoe/4FZCzW2d06ZmoiNfz0vZ/yg3d/QKozlTsn3skPx/2QwRmDsRst+PIbBpw4F878lYpzWHih+vdL3fYAACAASURBVEHe/gHEI4e/oWVB2Sp44//B67cr76jjZe3z8Nx8yB4CM+5SNhP3URbPGXCaqlkRD8Gyu5Qb79FQVwafPQkDpsL4a2D3KnjuWti/oXXfoQX+45wRZPmc3PXiWurDzderPsC6PfW88PluNpY3EDc7WaS7Ae2Z0KYA2NVkvwz4xnxaCHET8CPACXQzh3dNc6RfcAE2fxrld93Fnttvp/y++0i/+CIy5s3DmZ9/5At0Mkt3LOVXy39FQ6yB2f1nc+XIKxmSOeToIpMNm/LqsRLKxfWLRfDF0+qHeegcGDsPMgeqmYWZgJ0fwdpnYeOrKomfsKm0GlvfhXnPHdOa/NfY8Ao8e42614xfQv/JhzWgN8ugGcoLadXDsOY5GHvFkc959z7AUuJYfCrYXLDiIVj8PbjkUcgd1qqvcyg+t4PfXHgi8xd+yq9fWcd/XTz6G8tIZTUhfvvGRl74fE/jMYdNMCA7heH5fob3SWVUQRonFaaT6u7iUecdSLvZFIQQc4GZUsprk/vzgBIp5S0ttL882f6qZj6bD8wHKCoqGrdzZ4fn4dO0AjMSof6ll6h9ZjGRr74CIUiZPJnMK+eRMmlSl1sLrgpX8evlv+at0rco9BVy9airmVE0o3WRyfEI7PkManeqCOgdH0DNdvWjXzBOxUBsfUctNdkckHciFJbAgCnKLfTNX4AnHS5/BvqOObZ7b1oKi76jbAhn/hpOmHrsgnCAcB38aYzqyzVvfj36+1BqdsKfx8LAqXDGL1S/Q9Xw4R/hoz8pQ/7cJyBveOv60gzXLVzFm+v2sfCaEiYNygGgLhzn/re3sOCjHUgk04flMW1YLqXVIbZVNLC9MkRZTZhANAGA22Hw3YnF3Dp9EH5PN3KQOEY63dAshDgFuEtKOTO5fweAlPLeFtobQI2U8rDzW21o7n7IeJzQmjXULFhA4P0PkKEQzuJiCv78J9xDjt4I2W79k5LXtr/Gb1b8hmA8yMz+M5k3fB6DMwfjtB3Hj4SUKh1GqFrlTSr/SonDjn+p5ZiCsSq3UuEEyBgI/nwVXWwYSjCeuRrMGFz8MAybc3T33LJMGYn9feGsX8MJZyjD9/Gw4i/w2s9g8o/hjDtbjsNYcp2yYZx3v+qvO2l3iTbAxw+odBrpRfDtJyF/5PH1KUlVIMq0/3mXLJ+LJTeeyuJPy/jTss00RBKUDMjk8olFTBmcQ0aK+ndMmBahuEkwEmfL/iBfltWybMN+VpfWkuF1cNO0QVx9av/D2jS6K11BFOyoOs7Tgd2o+s6XSynXNmkzWEq5Obl9LvCfR+q0FoXui7Qs4uXl1C5aRPWT/4fhdlO04HHcgwd3Tn+kZPX+1fz9y7/z4Z4PKUot4uqRVzOtcBrZ3sM8EbeWeFjFMtSVKZfNlBz1I+nJaD7n0P4NKq6gfjec9Ss45abDX3/be6q9L08JwuAZxy8IoJa5HvoWBCvh316D3Gae9Ku3wZ/HwaAzYdrPvzm7iYVg5d/g7V+r1OYzfwP9xqsxOM6iR8+s2sVPF3+Jz2UnEE0wJM/HZROKmDE8l4IMLzaj5RmplJJQzOT1tXu5/+2tbK8MUpTp5WdnD2X2qD5dbjZ7PHS6KCQ7MRv4A8ol9VEp5T1CiLuBVVLKF4UQfwRmAHGgBri5qWg0hxaF7o+UkuCKFZTdeBOG203xEwtwDRrUYfePJCK8tv01Fq5byObazXjtXs4oPIPLh1/OkMwhuGwd4PtuWUcXGBaogKe+DXtWK8Pt7P9R55kJtTRVsQkqN6gKc2uXqOWdM38Fg88Cl6/t+rvxdXj6UpUS5Nw/gsPz9c8Xf0+lDDn3/mT22GZqfCei8OljsPQ/wIyqYyk5apkre7BKMZI/SqU5b9iroqwbypWtJVAOwQrIGQZn3v01W4uUku8/sYoN5Q1ceHIBZ43IZVCuH4/z2IIoGyJxnly+k0f/tYOKQJQxhen857kjOLmo5ej27kSXEIX2QItCzyG4ciW7rr8Bw+OheMECXINOaNf77Q3sZdGGRTy7+VnqYnX0SenDaQWnMb14OkPSh5DlyeqaT4bxCCyZD+tegOyhYMWVIFjmwTZOH2QOgFNvhaGzwJXatn2QUkU77/wIvrMIBk0/+FnlZnigRAXETb0d+hymdLuZgO3vqevU71GzoLpdyo5iteBF5PQpm4bTp5IRutNh6p0w7mqwKwNxwrTYtK+BPL+bLN/xiXplIMoD72zhn5/sIhQ3ubykiP83ezgeVxcvNHUEtChougXBFSvYdcONGF6vmjEMPPoKZ0dDKB7i/bL3eXX7q7xX9h5SSk7MPpEzis7g9H6nk5+ST4ojpWuKQVMsC975Dax5BrxZkNpXPS2nFUJGEfjy1dN75oC2F4QDlK+Bv01V9SS+vQC8SQP8P69UM4nz7leC1Nws4dDvEq5R9pZovbI5ROrVzKCuTLXxZKiXO03VsLC7lbG8YoOKg6jZAYUTYc7/qtlFGyOlpLQ6xF0vruWdjRX0y/DwP3NH862B7bCs2EFoUdB0G4LLV7DrxhswvCltIgyBWID3yt7jjR1v8OGeD4mZMfxOPxP7TGRG0Qwm5E8g3Z3e9YvfNEe4Vs0QbI7ky9mxCfheuEnFIZzzBxh7pZolPPgtGH4OTPnp4WcJh8MyIRFRS0xm/Ovfz+Y8GFEtpZpVvP/f8OU/lDfXxOvUvdtyuSyJaUmWrC7jnlfXUxuO892JRdw5e3i3rFWtRUHTrQguX65mDD6fEoYBA77RRiYSSNPEcH1zeUBKydKdS3lhywss37ucuBUnzZnG6JzRlOSXMLnfZPqk9CHF0TNSb3QaDeXwwERVkvTyxfDGHbDlLTjvARg6s/1mKYcSC6n7vv/fyqsrewjMuFsta9mPwWOscrP6TsWTDmvj2VMb4ufPreHdTWrW8Ltvn8TEAVlt8EU6Di0Kmm5H4OOPKbvhRgyPB2dxMVYohBUMYoXDWMEgMhoFh4P8//wPMi655GvnvrT1JX7+r5+T7kpndPZoSvqUcErfU8jz5pHqTMUQPc/FsNN477/hnXtUgNpXi2HkBTD5R9BndMf2w7KUPWLF3+CzBWoZKnuoSgc+9qqDy1uHYsZh3Uuw8q8qFYfhgPnvHnEZyrQkz6wq5b7XN1IfjnPR2ALGFWeS73eT63eRk+oiK8XVordTwrSIJCxMS5Lm6fhZqhYFTbck8NFH7Lv3PjBNhMuF4fEgPG4MjwfD4yWybh3x0lKKnliA9+STASgPlnPhCxeS583jrlPvothfTKozteV0FJrjIxaCh05R6/p2D5z/gMr71FGzhEOJNkDpx7D+Zdi6TNklHF4YOlstLRWWqHa1pfDJo/DZQghVgjdbRV2vfwlOvESl9TgK21JZTYg7l6zhvU0V3/hMAOleB36Pg4QpicRNogmLSNwkYR38rS3K9DBpUA7ThuZw6qBsfB1gxNaioOm2mIEAZjCIYbcj7Haw2REOtZ2oqWH7eapewYAlz2HPzua6N69j9f7V3HXqXZzd/+yuX/msJ/DlMyqn0ejLVPxER88SDsUyVXbWut3q6X/Lm1C6XHk05Y5QsRvb3lVt+4yGwTOVoTq9GF67DcpWwI0rIL3wqG6XMC027wuwvSpIRUOUykCE2lC88RWMJbAbAqfdwGm34bIZOB0GTruBZUk2ljewcV8DcVNiMwQnFvg5bXAO04bmMrpfWrsEz2lROIT9O+vZu7XusG1sNoFhMxCGwLCpl81mYNgFNoeB3W5gc6iX3WHDntx2eeyIwwTIaNqW0Gefs/PKK3EPHcLKX17Er1fdy3eGfYdbx96qbQYdhZmAr/6pPIT6T+68WUJzxCMqfUjFJlj7HGxeqhL7FU9Ws4e+YyA1X7m2GoaqhfHYLCi5Hmb/V6tva1qy8ZWwLCRgCIEh1LsQB/YFsYRFVSDK+5sr+HBLJV/trmdXdQiJSrsxuiCN8f0zOeWELMYVZ+BtA8O2FoVDWL10Jx8/t7UdeqRmnC6vHXeKA3eqE4/PgdvnUO8pTjypB/YPbjtcx17PVnOQmqcXUf7LX/LKtxysvHgYvz3ttxSnF3d2t3oX9XtVCo82SlnRLphx5e4aqgZvhhKC5iKo/3q6Wna6eaVy+e1ALEsSjCXYWRVk2fr9fFlWx8Z9DeyuCSNR6cQH5/oYV5zBJeP6tTqY7mhFodcsuo6e2o/B4/OIBFpO42yaEithYZkSM2FhJSSmKTFNCzNhYcZMEnGJZVqYCdXGjFvEwglikQTRUIJoOEH1niDRcIJYOIFlNi+6hl0oEUlxKKFIcTYREgfuFDuuFEdjG3eKA6fXjqFnJAD4L53LK0sfYM7HlUz81ggK045u2q9pQ/x91BN3V8bmgJQs9Tock38Iz1wFqx6HKT/ukK4dwDAEqW4HowrSGVWQTty0CEVNdteG+HBLFZ+X1bBhbwP/+GQXBemedo+w7jWiYHfaSM20kZrpbvd7WZbEjFskYibhQJxQfZRQXYxgfYxYKEE0FCcaUqIRDZtEggnqKyJKSCKJlqtKCHB57Hh8DrxpLlLSXXjTnHj9TlLSXHj9atub5sTtdfToJa0n1z/J70+r4YHyLLIfXELkWxfiHdNKH3lN6+kps93h5yn7wmdPwMTrwdV5y5AOm0Ga1yDNm8aIvmmNIlHREMHtaH97Wa8RhY7EMASGy4bDZcOT6iSzz+H/g0kpG2cniahJqCFGuCFOuCFGqCGmZiLhBLGwSTSSIBqMEwkmqKsIEwnGMePfLBwiDIEn1YE3VYlESlJEUrPc+LM9+LPc+DJcGN0wG+TW2q38afWfGJU/hqIHfkb4u9ex+5ZbGg3PGs0xYxhw6s3w6k9VDqmjqR3RQRwUiY5xY+01NoWexgEhScRMwg0x6qsiBGujBOtiRIJxIsE40WBCbQfijceazkKEASlpLvzZHtLzvGQVpJBV4COrwIc7pWtG+8atOPNenUdpfSn3TL6HqYVTCa/6lJ1XX4175EiKn1yI4ey5OfE17Ug8Av87TGWuveZNsHdAYsQORNsUejhCCGx2gc1u4PI6SM9reTYiLUkiYRENxanbH6Z2f4iGygjBuuSyVl2ULav2se5fBxOsedOcZBX4yO7nIz3P22jXcKUkDepeBzZH288yLGmxtnItcStOiiMFj93ztdcjXz3C2qq1XD/6eiYVqEI93gnjyb39dvbfcw+bJn4L78SJpE49Hd+0aTjy8tq8j5oeisMNE65VdR+2vQ9DzuzsHnUKeqagQUo146gpD7FvRz3Ve4LUVYSprwhTXxVBWs3/H7E7DDx+Jxn5XjL6pJCZn9K43ZqZhpSSe1fey9Mbnj5su4n5E7n3tHvJ8eZ87Xjtiy9S/9LLRL76CrO2FgDnwIH4pkzBN20a3rEnIxxdcwak6SKEa+B3w1QMwxXPHXeth66EdknVHDeWqWYXNeUhQvVJ+0YwQTSSIB4xiUUShBviNFRFaKiOfM3Tyu1zkJ7rweN34vEpzyp3iqPRXdfrd5LRJwVHk5z3f/3ir9z/+f2c2vdUxuaOJWJGiJkxYmaMqBklZsawGTYuOOECJvSZ0GyfpWliBgKEv/iCwFvLCH/xBdEtW8A0MXw+UqZMwT/zLHynnYbhbWWJSk3P5qVbYfVCuPYtVR2vLVnzHCy9U5UrHXN52177CGhR0HQY0pJEwwmqdgeoLAtQtz9EQ1WEQG006WGlDOXyEHu4EODP9pBd5GOfZyf/qHyCguIsfjD5ZoZmDUXQvGfLsUQsy1iM+P791L/5JsEP/kX488+RoRDC6cRbUkLqzLNInTEDe0bPKKSiaQOqd8CfT1YeSZc8dnTFkI6GFX9VZU0PpF+56O8w6sK2ufZR0CVEQQgxC/gjqvLaw1LK+w75/EfAtUACqAC+J6XcebhralHoPkgpD7rnxk0igUSje25DTYS6fcq+sa+8Bitw8A/P6bZh2A2kJZESkOpdSokwBNkFPvoNy6DvkAzyB/ixH2WFLSklZm0tgXfeoeGtZYRXr1bLTIZByuRJZF9/Pd6xbfxkqOmePH25yqN043JVo+J4kFKVIf3gf6DvWFUI6a1fqPoR314IQ2a2TZ+PQKeLghDChqrRfCZQhqrR/B0p5bombaYBK6SUISHEDcBUKeWlh7uuFoWexcq9K7n+respsg/ge2n/Tlogj1B1XAmAEAiDxshvYQjMhEX1niC1+0MgwbAJcotT6Tcsk76D0klJd+H02HF6bDicthZjNaSUmPX1hD5eTv3rrxN47z1kOIx7zBiyr78O3+mn64jz3kzZanh4Goz7Nzjn962Px7BMePmHsHoB9D8Npt0JBeNUxbnHzoZInapkN/D0tu1/M3QFUTgFuEtKOTO5fweAlPLeFtqfDNwvpZx0uOtqUeg5rK9az9WvX43f6ef2kts5rd9pOG1HdieVUlJfFWHnV5WUb6unclcDNftC3wz6E+Bw2XC67TjdtiYR4vakJ1XSo8pjwxmvJ/HGC8SXvoCsqcJ5wglkz/8+/jlzVFI+Te/jkbNg92rw5aj02jZH8t2ptl2pKu/TyAshY8A3l5niEVW7euMrMOwcOO0nkH/iQeP1/vXw+DmqXvUVzx3M5tpOdAVRuASYJaW8Nrk/D5gopby5hfb3A+VSyl8f7rpaFHoGpfWlXPHaFSDhtgm3Mb14Oh6758gnNoOUkobqCLvWVxOqjRGPmSSiJvGYiiqPx0ziUbPROK7SkpjNBv0BOG0JXMEKXIEK3LYomScPJee08fhzU/BluElJd2Gzd7+gP80xsns1LPuletq3EiqPkpUAM6a2Q5XKW0kYkDMcBs2AURep6nPRenjqMij9CE76Lky6RdV6OFQ49nwOT5ynrnHlC62vXHcUdAVRmAvMPEQUSqSUtzTT9grgZuB0KWW0mc/nA/MBioqKxu3ceVizg6aLs75qPT9894fURmv58bgfM3vg7A7JbiqlRFrJfFZxi1gkQag+Rrg+RqAmQrAuRjgZTR6qixAqryYcNEnYDhErAZ5UJ6kZLlKzPPizVZR4apYbf5ab1Cw39g5IR6DpAOp2Q7BCCUFTYUAqsajeDmWfwO5PoWa7OsffT80GandByfdhwvch64SWl6BKl8OTF6saEFe/DDlD2+WrdAVROKrlIyHEDODPKEHYf6Tr6plC90RKyb92/4vH1j7GJ+Wf4LF7uGnMTVw4+EL8ziMUeu8kLNMiHo5R8fwrVCx6jlBVkGhWMYmTTyeWOzCZ1ypGqD72jcSHHr8TX7pLud+mquy4ntRk0sNUJy6PDcNmNKZoN4yD2063HVeKXds0ujKWBdKEeDiZhbUS9m+AspXq1bAPxl0NY+epCOkjsfVdePoyVS3u/AeVjaGN//27gijYUYbm6cBulKH5cinl2iZtTgYWo5aZNh/NdbUodC9iZoxXtr3C42sfZ1vdNtJcaUzuO5kZxTMYlzuODE/3cAW14nHqXnqJ6r//ndj2Hdjz8si64Xr8519IPCGorwxTUx6iviJMIBkpHg7ElUtuKEEsHMdMHP3fmt1p4Mtwf20Wkprpxut3qofU5KxHSuUSLC2JYTPwZbrwZ3lwuPRMpcOxLFW3IRaAYJWyRfhyj/78ja/B4n9TQpM1RAnK2HmqZkUb0OmikOzEbOAPKJfUR6WU9wgh7gZWSSlfFEK8BZwI7E2eUiqlPO9w19Si0D0IxUM8teEpnlz3JFWRKvqm9OWMwjOYUTyDAekDSHOmdcsKaVY8Tt0LL1D18MPEd+zEnp9P9g3Xk37xxd8wSB/IT3XALTcSjBOsjRKqixIOxrFMiTRVG2mpdpaUJCImweQMJFSn8lnFI2YLPWoet8+BP8uNP8eDv8kSlz/bQ2pm90yE2Cuo2gofPwibXoX6PcqYPXQOlFynKsYdR4R1lxCF9kCLQtenNlLLDW/dwJqqNQzPHM6ZxWcyvXA6+b58vI6eEUVsxWLUPf88VQ8/Qry0FHuffLJvvJH0Cy9sU28laUniMZNgbZTafSECtcrkJoTAMJSbrjBAGAaWaRGojiYTIx7Ia6XEpWmqEmGQnIV4SMtRr9QsN2lJAdFLV52MGYf6cli3BDa8rGwWUipX1im3wdDWxTVoUdB0CvtD+5m/dD6lDaVcO+paLhlyCRmeDBxGz8w5ZEWj1D63hOpHHyW+axeOvn3JuvEG0i+4oNNdWaWUWAlJNJKgbn+ImnKV0ypYq5IghpLv0VDia+c5XLaDM4scT2PhJ5fXkUxXYsfldeDy2rE7VPnaw4mImbCU91fSAyweM/H4HPgy3bpo1OGwTGXkLl0B655XwXRTblMpvluBFgVNh1PWUMb3l36fynAlN4+5mblD5/aYmcGRMKNR6p5ZTPXjjxMvK8NRUEDm1VfhP/vsLlvj4UD23GBthJq9IWr2hQjWRBtTsKvZRvSobCHKWC4QyXfDJjATknjUbDGhomETpGa6Sc/zkp7rJS3XQ1quB5vNINpoi0kWpQoniIUSeFKdFAzLoM8JaTjdvSR+xLKU6+v+9cpO0UrvJC0Kmg5la+1Wvr/0+4QSIX4w9gdcMOgC3Pb2r3LX1TDDYeoWL6b68QXEd+8GIXCPGkXqmTPwn302zsLuUzbUNC0SMYtIQLnqhupVFcFoKPmDHVHlZr9mE2mybbMb2B0GdqcNu9PA5jBwOAxsDhvRcIJAtcqPFayJEqiJYiaajxsBZXh3uGxEggmkpdKd5BSlUjgsg37DMsgfmIbdacOMWwRqIwSqozTUHHyPR0wcbhXl7nA1eSWP2RwH+9p02+m24fR0keW0A7/VreyLFgVNh7G2ci3XvXUdAtEYd3A0kck9GTMcJvjxxzS88QbhVZ8qgQCcAweQOn0GKZMnY8/NwZ6Tg5GS0jV+dDoJy1TLS3UVYap2B0jELVweO26fs7FWucNpw2YXJGImO9ZUs2dzDRWlDdSWh5DJdCcur51wQ/wb13d57UnBMEnELBItBC22hN1pkJrpTsahNPEES3Ni2AyESNp2Gt+VnccwBMIQzb4bNoFhF8otuYOW0LQoaDqET8o/4ZZlt+BxeLhtwm3MKJ7RY+0HrUFKiRUMEVm3jvrXXiX0ySfEtm47+NQHCJcLW1YW9uws7Dk5uAYNIuPSS3H07duJPe/6SEsSqI2w48sq9mypJR41VUyI30mK34kv001argePz4ndqbytDpS9jUfMxuy98YhJPJpQkfBxCzNmqdK4yXZqlnTwdayeYEdCCNSym83AZlOFsw7MrOwOG3ZHcttpY9TpBRSPzGrlfbQoaNqRumgdz295nj9/9mey3Fn8dMJPmVo4FbvRS9Z5W4kVDhPZsYPwyk9IVFVi1tRi1tVh1ddj1tdj1dUR36s8tH1nTCPre9fgOXlMr55JdBUsU80yQvVRaveFaaiKYFmHxItIwJIqej55TMWUHPhcJs9R12u67NbovpywsBIWZiK5bVqYcYlpWpx0RiEnTu3Xqv7rcpyadmFd1TqeWv8Ur+94nagZZVjmMP795H9nUsEkDKF934+E4fHgHT4c7/DhjceklGBZSNME0yRWWkrVw4/QsGwZgbeW4Ro+nKzv/Rv+WbN05bhOxLAZOG0GTred9Nz2T8sCHBQXKcFSM4r2Rs8UNEckakZ5ddurLNqwiHXV63AaTsbljePM4jOZWjiVbE+2fpJtBxK1tVQ/9hh1L7xIorwcW1YW/lmzQErMUBArEMAKBLFCIaxgEOGwk3bOOaRdfLEuGqT5Bnr5SNMmLNm8hN+u+i0NsQZyPDlM6juJs/qfxcjskaS70vXsoAOw4nHqXnyR2qeeJrJxI4bLhXC7EW43htuNcLswXC7M2jpi27aBw0HqjBlkXPFdvGPHasHWAFoUNG3A85uf5xcf/YKBaQOZM2AOJX1K6O/vT5orTf/QdAJSSqz6eqRlIQyDZEizKiRkGCAEodWrqXny/wh++CEyEsHZvz/pl11G+sUXYUtN7eyvoOlEtChojovXtr/G7e/fzqCMQfxk3E8YmTOyy2Yz1XyT+P791Dy9iPpXXyW+cyfC5SL9oovIvG4+zvz8zu6ephPQoqBpNct2LuNH7/2I/v7+3FZyGxPyJvT6uIPuihWLEfjgA2oWPklo5UowDNLmzCHrhutx9e/f2d3TdCBaFDSt4v2y97n1nVvp5+vHbRNuY2KfiVoQegDSsoisW0flQw8ReO99ME18088g+6ab8DTxhNL0XLQoaI6Z5XuXc9NbN5GXksfPJvyMU/ueisOmXSB7ElJKYtt3UPnggzS89RYyEsF7yilkfPdyUqdMQTj1A0BPRYuC5pj4dN+nXP/m9WS6M7mj5A4mFUzSgtDDiZeXU/mXv1D/6mtY9fUYfj/+ObNJv+hi3KNGameCHoYWBc1R80XFF1y39Dp8Th93lNzBlMIpOlVFL8IMhah/+WXqX36F0OrVkEjg6F9M+gUXkHbBBTi0YbpH0CVEQQgxC/gjqvLaw1LK+w75fAqqMtto4DIp5eIjXVOLQtshpeSpDU/xu1W/I92Vzh0T72Bq4VQtCL0UKSXxvXup+cc/CCx7m9iWLQA4CgtxjxyJ56TReE48Effw4RgprY/otcJhFWehZyIdSqeLghDChqrRfCZQhqrR/B0p5bombfoDfuAnwItaFDqOumgdv/jwF7yz6x1OzD6R60dfzykFp2hB0AAgEwnCa9ZQ+9wSYps3EduxE7OmRn0oBM7iYtwjR2DLzsZwexAeNzaPB+H2YHjcCKcLs7aWeHk5ifJy9b5vH4n9+7GCQez5efhnzybt3HNxDRumBaID6Aq5j0qALVLKbckOLQLOBxpFQUq5I/nZseWy1RwXq/et5mfv/4yKcAVzh8zlqhFXUeQv0n+YmkaE3Y53zBi8Y8YgEwmsSIRoaSnhlSuJrF9PbNt2gh9+hBUOI2Oxr2V9/fqFBLa0NIz0dOwZGTgHDMDw+4lt3Ur14wuofvQxHEVFpM2Zg//cc3ENHNB47rZgmwAADiFJREFUqozFiO3eTby0lFjpLmK7SnGdMIj0Sy5G2Lpffe/uQnuKQgGwq8l+GTCxNRcSQswH5gMUFRUdf896KaZl8siaR3jw8weVQXniHcwZMAef09fZXdN0YYTdjs3nwztiBN4RIwCQ8ThWJIKMRrFMExkOYwWDmKEQMhDACoYwfD4chf2wpaZiOJ0IhwORfJeWRXzXLmoWLyb4wQdU/uUvVD70EK7Bg7FlZRHfVUp8b7mqOnagHw4HMh6n5v+epM899+A58cTOGpIeTXsuH80FZkopr03uzwNKpJS3NNP2ceBlvXzUflSEKrjjgztYUb6CCXkTmD96PuPzx+tU15pOR5om0S1bqX3mGYLLP4aEiT03F3teLva8PBx9+uIadAKO4mIa3nyTyj/fj9XQQPrcueTe9lNsvsM/1FjRKFZ9PbasLJUepJfSFZaPyoCmtQf7AXva8X6aZgjFQyxct5DH1jxG3Ipz5YgrmTd8Hvk+7VGi6RoImw330CHk/7871QwkHD44qzhkmShr3jzSzj6bvXf/itpnnqHhzTfJu/Pn+OfMaVz+lKZJZN16gh9/TPDjjwmvXo2MRsFux5Gbiz0/H0ffPjj69sXRty/2vDzs2TmqyFFWVq+P1WjPmYIdZWieDuxGGZovl1Kubabt4+iZQpsSt+I8t+k5HvriIaoiVZycezKXDr2UM4rOwGP3dHb3NJrjJvDRR5T/8m7iO3fiKSnBf9ZZhFauILh8BVZ9PXDAc2oE9tw8zOoqElXVmFVVJKqqlOHc+qY500hNxZ6VhT07G0dBX1JOPRXvKafgyM3t6K/YpnS691GyE7NRLqc24FEp5T1CiLuBVVLKF4UQE4AlQAYQAcqllCMPd00tCofHkhZLdy7lT6v/xK6GXQzJGMLcIXM5q/9ZZLgytDFZ06OwYjEqH3iA6gVPICMRbJmZuEeMwD1qJN5x43CPGoUtNRVhV4siUkqIx7FicaxImHjZbmI7d5LYV45ZU0Oitg6rrg6zvh6zro7E3r1YgQAAzhNOIGXSJHynTcY7fjyGp3s9XHUJUWgPtCi0zIq9K/j9p79nbdVaCnwFzB0yl9kDZpOfkq/FQNOjie/dS2T9BpwjhuNISzvuH2yZSCBNEysaI/zppwTee5fwl18R3bQJEgmw23EPG4ZwOb/ueXVgU9Donmt4vBgpXuW66/Uc3E9JwfCqd1tKitr3+bClpSE8njb/m9Wi0IvYWruV3636HR/s/oAsdxYXDrqQ8wedT5G/SBfB0WjaCGlZJKqqaHj7HULLPya2Y0cTEWjyAy5QdZpjMWQshhWNIg+8Due+2wThdDZx5U3Hlp6BLSODtPPOxTtuXKv63xUMzZp2pjJcyYOfP8izm5/FZXMxd8hcLh58MUMzh2qvIo2mjRGGgSMnh8xLv03mpd9GxuOqrvahT/QH9htrb1sgLTBNrEQCKxjEamjArKvHrK/HaqjHaghghcNYyTKrZkMgWW61AbOmlljpLqxAAEdhYatF4WjRvxzdkHAizBNrn+DRNY8SNaNM6zeNS4ZcQkmfEp3mWqPpIITDgXAcWwYAG0B29lG1lVKCaSJNExlPgJlAuFzH3tFjRItCNyKSiPDytpd58PMHqQhXcHLOyVw67FJO73e6DkDTaHoYQgiw25WRvAPE4ABaFLoBuwO7+cfGf/Dspmepj9XT39+f7438HrMGziLLnaWNyBqNps3QotBFsaTF8j3LeWrDU7xf9j5CCE7KOYnphdOZXjSdPr4+2Ayd/0Wj0bQtWhS6GIFYgOe3PM/TG56mtKGUVGcqZw84mxnFM5iQNwG/y689ijQaTbuhRaGLsKt+F09teIolm5cQTAQZmDaQa0Zdw8zimfRP76+jkDUaTYegRaETkVKyat8qFq5byLu73sUQBuPzxnNW/7OYVjiNTHemXiLSaDQdihaFTiBuxnll+yssXLeQTTWb8Dl8zBkwhzOLz2R8n/H4nf7O7qJGo+mlaFHoQILxIIs3LWbB2gVUhCso8BVw1YirmDlgJkMyhuCydZzbmUaj0TSHFoUOoDJcyVPrn2LRxkU0xBoYljmMeSPmMbN4JnkpeXqJSKPRdBm0KLQjuxp2sWDtAp7f8jwxM8a4vHHMGTiHqYVTdXyBRqPpkmhRaAe+qPiCBWsXsKx0GQYGpxacyjkDzmFSv0naXqDRaLo0WhTaCNMyeXvX2yxYu4AvKr7Aa/dydv+zmTVgFiX5JXgd3s7uokaj0RyRdhUFIcQs4I+oPFAPSynvO+RzF/AEMA6oAi6VUu5ozz61NaF4iCVblrBw3UJ2B3aT68nliuFXMGvALEZkjsBhO7aEWRqNRtOZtJsoCCFswAPAmah6zZ8IIV6UUq5r0uwaoEZKOUgIcRnwX8Cl7dWn4yVmxthau5WNNRvZWK1e66rWEUwEGZw+mFvG3MLMATMpTC3UUccajaZb0p4zhRJgi5RyG4AQYhFwPtBUFM4H7kpuLwbuF0II2UmVf6SU1ERr2Bfcx77QPvaH9lMeLGd3YDebajaxvW47pjQBcNlc9PP1Y2KfiUwpmMLpRaeT7Tm6lLgajUbTVWlPUSgAdjXZLwMmttRGSpkQQtQBWUBlW3dmyeYlPL72caSUyGS5JMlB7YmZMarCVcSs2NfOM4RBhiuDwtRC5gycQ1FqEQPTBjIsaxhZ7izcdreeFWg0mh5De4pCc/6Wh84AjqYNQoj5wHyAoqKiVnUm3ZVOX19fElbi0GsDYMPG+LzxZLozyXRnkuXJom9KX/r4+uBz+EhxpGj7gEaj6fG0pyiUAYVN9vsBe1poUyaEsANpQPWhF5JS/g34G6gaza3pzLSiaUwrmtaaUzUajabX0J7rHp8Ag4UQA4QQTuAy4MVD2rwIXJXcvgR4u7PsCRqNRqNpx5lC0kZwM/AGyiX1USnlWiHE3cAqKeWLwCPAQiHEFtQM4bL26o9Go9Fojky7xilIKV8FXj3k2H802Y4Ac9uzDxqNRqM5erTbjEaj0Wga0aKg0Wg0mka0KGg0Go2mES0KGo1Go2lEi4JGo9FoGhHdLSxACFEB7Gzl6dm0QwqNHoIem5bRY9MyemyapyuOS7GUMudIjbqdKBwPQohVUsrxnd2Progem5bRY9MyemyapzuPi14+0mg0Gk0jWhQ0Go1G00hvE4W/dXYHujB6bFpGj03L6LFpnm47Lr3KpqDRaDSaw9PbZgoajUajOQy9RhSEELOEEBuFEFuEELd3dn86EyHEo0KI/UKINU2OZQoh3hRCbE6+Z3RmHzsDIUShEOIdIcR6IcRaIcStyeN6bIRwCyFWCiG+SI7NL5PHBwghViTH5h/JNPm9EiGETQjxmRDi5eR+txybXiEKQggb8ABwNjAC+I4QYkTn9qpTeRyYdcix24FlUsrBwLLkfm8jAfxYSjkc+BZwU/L/iR4biAJnSClPAsYAs4QQ3wL+C/h9cmxqgGs6sY+dza3A+ib73XJseoUoACXAFinlNillDFgEnN/Jfeo0pJTv880Kd+cDC5LbC4ALOrRTXQAp5V4p5erkdgPqD7wAPTZIRSC560i+JHAGsDh5vFeODYAQoh8wB3g4uS/opmPTW0ShANjVZL8seUxzkDwp5V5QP45Abif3p1MRQvQHTgZWoMcGaFwe+RzYD7wJbAVqpZQHCp/35r+rPwC3AVZyP4tuOja9RRREM8e025WmWYQQPuBZ4AdSyvrO7k9XQUppSinHoOqtlwDDm2vWsb3qfIQQ5wD7pZSfNj3cTNNuMTbtWnmtC1EGFDbZ7wfs6aS+dFX2CSH6SCn3CiH6oJ4Gex1CCAdKEP5PSvlc8rAemyZIKWuFEO+i7C7pQgh78om4t/5dTQLOE0LMBtyAHzVz6JZj01tmCp8Ag5PeAE5ULegXO7lPXY0XgauS21cBL3RiXzqF5DrwI8B6KeX/NvlIj40QOUKI9OS2B5iBsrm8A1ySbNYrx0ZKeYeUsp+Usj/qt+VtKeV36aZj02uC15Iq/gfABjwqpbynk7vUaQghngamojI57gP+E3ge+CdQBJQCc6WUhxqjezRCiMnAB8BXHFwb/jnKrtDbx2Y0ylhqQz1M/lNKebcQYiDKcSMT+Ay4QkoZ7byedi5CiKnAT6SU53TXsek1oqDRaDSaI9Nblo80Go1GcxRoUdBoNBpNI1oUNBqNRtOIFgWNRqPRNKJFQaPRaDSNaFHQ9DqEEOlCiBuPol1/IcTlR9luTQvHWzxfCNFXCLG4pc8Pd22Npr3QoqDpjaQDRxQFoD9wRFFozfnJSNc9UspLmvtco+kstChoeiP3AScIIT4XQvxWKH4rhFgjhPhKCHFpk3anJdv9MPnU/oEQYnXydepR3Kfp+VcLIZ4RQrwELG06C2jFtTWadqG35D7SaJpyOzAqmdwNIcTFqBoBJ6GivD8RQryfbPcTKeU5yXZe4EwpZUQIMRh4Ghh/hPs0Pf9q4BRgtJSyOpmJ9QD7j/HaGk27oEVBo4HJwNNSShOV/O49YAJwaIZUB3C/EGIMYAJDWnGvN1tIkdEW19ZojhstChpN82mOm+OHqFxRJ6GWXiOtuFewHa+t0Rw32qag6Y00AKlN9t8HLk0WkckBpgArm2mXBuyVUlrAPFRyuGO5z+E41mtrNO2Cniloeh1SyiohxIdJI+9rqIpZpwBfoAqh3CalLBdCVAEJIcQXqLrWDwLPCiHmotIit/TUf4AvDzm/5jBtj/XaGk27oLOkajQajaYRvXyk0Wg0mka0KGg0Go2mES0KGo1Go2lEi4JGo9FoGtGioNFoNJpGtChoNBqNphEtChqNRqNpRIuCRqPRaBr5/7HG42uVwgiKAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure()\n",
    "\n",
    "sns.lineplot(data=df, x='total trial', y='P(SR)')\n",
    "\n",
    "sns.lineplot(data=df, x='total trial', y='HPC reliability')\n",
    "sns.lineplot(data=df, x='total trial', y='DLS reliability')\n",
    "sns.lineplot(data=df, x='total trial', y='alpha')\n",
    "sns.lineplot(data=df, x='total trial', y='beta')\n",
    "\n",
    "plt.legend(['P(SR)', 'HPC reliab', 'DLS reliab', 'alpha', 'beta'])\n",
    "\n",
    "\n",
    "\n",
    "#df.plot(x='total trial', y=['P(SR)', 'HPC reliability', 'DLS reliability', 'alpha', 'beta'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0, 1)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8nGW9///XPTP37JNMZrJvTdI1Sfc2XehC95ZSdqiAgMpB/Cog6hH1eOQnHr+cw/GHR8QNUVFAWVRkl1Ja2tK9Tdq0SbPv+75NZp97ru8fqT1FKhRJSGivJw8ej9wz19zzmfsB857ruu77uhUhBJIkSZIEoBvvAiRJkqSJQ4aCJEmSdIYMBUmSJOkMGQqSJEnSGTIUJEmSpDNkKEiSJElnjFkoKIryhKIoXYqilP6D5xVFUR5VFKVGUZSTiqLMH6taJEmSpPMzlj2F3wGb3uf5y4Cpp/+9E/jFGNYiSZIknYcxCwUhxDtA3/s0uQp4Sow4BDgVRUkZq3okSZKkD2YYx/dOA5rP2m45/Vj73zdUFOVORnoT2Gy2BTNmzPhYCpQkSbpQFBUV9QghEj6o3XiGgnKOx8655oYQ4nHgcYCFCxeKwsLCsaxLkiTpgqMoSuP5tBvPs49agIyzttOBtnGqRZIkSWJ8Q+EV4LbTZyEtAQaFEO8ZOpIkSZI+PmM2fKQoyrPAKiBeUZQW4LuACiCEeAz4K7AZqAF8wOfGqhZJkiTp/IxZKAghbvqA5wVw11i9vyRJF6dwOExLSwuBQGC8SxkXZrOZ9PR0VFX9p14/nhPNkiRJo66lpQWHw0FWVhaKcq7zWS5cQgh6e3tpaWkhOzv7n9qHXOZCkqQLSiAQwO12X3SBAKAoCm63+yP1kmQoSJJ0wbkYA+FvPupnl6EgSZIknSFDQZIk6RNmYGCAn//852OybxkKkiRJnzAyFCRJkj5hrr76ahYsWEB+fj6PP/44AL/5zW+YNm0aq1at4vOf/zx33303AN3d3Vx33XUUFBRQUFDA/v37AXjggQe4/fbbWbVqFTk5OTz66KMAfOtb36K2tpa5c+dy3333jWrd8pRUSZKkMfDEE0/gcrnw+/0UFBRw+eWX8/3vf59jx47hcDhYs2YNc+bMAeDee+/lq1/9KsuXL6epqYmNGzdSXl4OQEVFBbt27cLj8TB9+nS++MUv8tBDD1FaWkpxcfGo1y1DQZIkaQw8+uijvPjiiwA0Nzfz9NNPc+mll+JyuQC44YYbqKqqAmDHjh2UlZWdee3Q0BAejweAyy+/HJPJhMlkIjExkc7OzjGtW4aCJEnSKNu9ezc7duzg4MGDWK1WVq1axfTp08/8+v970WiUgwcPYrFY3vOcyWQ687derycSiYxZ3SDnFCRJkkbd4OAgcXFxWK1WKioqOHToED6fjz179tDf308kEuGFF144037Dhg389Kc/PbP9QcNCDofjTE9itMlQkCRJGmWbNm0iEokwe/Zs7r//fpYsWUJaWhrf/va3Wbx4MevWrSMvL4/Y2FhgZKipsLCQ2bNnk5eXx2OPPfa++3e73SxbtoyZM2eO+kSzMrIu3SeHvMmOJEnvp7y8nNzc3PEu45yGh4ex2+1EIhGuueYabr/9dq655ppRf59zHQNFUYqEEAs/6LWypyBJkvQxeeCBB5g7dy4zZ84kOzubq6++erxLeg850SxJkvQxefjhh8e7hA8kewqSJEnSGTIUJEmSpDNkKEiSJElnyFCQJEmSzpChIEmSNAa2bdvG9OnTmTJlCg899NB4l3PeZChIkiSNMk3TuOuuu3jjjTcoKyvj2WeffdfaRhOZDAVJkqRRduTIEaZMmUJOTg5Go5Ebb7yRl19+ebzLOi/yOgVJki5Y3rYmNL9vVPept1ixpWa+b5vW1lYyMjLObKenp3P48OFRrWOsyJ6CJEnSKDvX8kGKooxDJR+e7ClIknTB+qBf9GMlPT2d5ubmM9stLS2kpqaOSy0fluwpSJIkjbKCggKqq6upr68nFArx3HPPceWVV453WedF9hQkSZJGmcFg4Kc//SkbN25E0zRuv/128vPzx7us83JRhYIQ4hMzridJ0ifb5s2b2bx583iX8aFdVMNHnc1dDPYNjXcZkiRJE9ZFFQrhUJiWmlYi4bG9x6kkSdIn1UUVCgABX5DO5q7xLkOSJGlCuuhCwRZjpbejD+/Q6F7QIkmSdCG4aEKhp72XHc/tIugNYraZaalrJapFx7ssSZKkCeWiCYXDbxWy76+HeOHnL+Ef8hEKhOhp7x3vsiRJkiaUiyYULlm/kLkLptHW1MlTP3iWwa4BOpo6CfgC412aJEkXoB/96Efk5+czc+ZMbrrpJgKBT8Z3zZiGgqIomxRFqVQUpUZRlG+d4/lMRVF2KYpyXFGUk4qijNlJvXt+8xrexl4mJ8XjHfTyzCN/pr60gda6NqJROYwkSdLoaW1t5dFHH6WwsJDS0lI0TeO5554b77LOy5iFgqIoeuBnwGVAHnCToih5f9fsO8AfhRDzgBuBn49VPb9/aTsvlR1hT3UZmhYiEgrz6pNvsPP5t+nvGhirt5Uk6SIViUTw+/1EIhF8Pt8nZu2jsbyieRFQI4SoA1AU5TngKuDsO00IIOb037FA21gVM+Dz4gv7CUSC9PkGMRlM2FQzPa/uYe9bR1iyaBpzL83HHuvAHmvHHuvAFuvAZLOgU43oTaaxKk2SpDFS+co+PKM8d+hIcTP9yuXv2yYtLY2vf/3rZGZmYrFY2LBhAxs2bBjVOsbKWIZCGtB81nYLsPjv2jwAbFcU5R7ABqw7144URbkTuBMgM/OfW/XwR499h5/9319xvK4OfzhAMBLEH/ZjNpjxhHy8vPMwr+8qRK/To1d06HU6dIoOVTVgtRpxxtlxJbmJT0vEneTGlejElRiHKyGO+GQXFpvln6pLkqQLT39/Py+//DL19fU4nU5uuOEGfv/733PLLbeMd2kfaCxD4VyLDP39IuM3Ab8TQvxQUZSlwNOKoswUQrxrkF8I8TjwOMDChQvfu1D5eZi1ciGPbV9IOBzm+d+9yB9+/UdaO7oJa2H8EQMW1YxZb0IX1d61PpIa1hMIGhj2+Ohs64PiGoKh914RbbVbcCe5SEiJJyHFTXyym4RUN/kLZhDrinlPe0mSxt4H/aIfKzt27CA7O5uEhAQArr32Wg4cOHDRh0ILkHHWdjrvHR76F2ATgBDioKIoZiAeGLNLjlVV5ZbPb+WWz2/lnbf286sfPsHJ8hqGtDDDihdVZyDWYsdqsKLqDESERiASxhsOntmHxWDEbjLjtFtwxdmJczsQRgODngBtDW2UHas8c1aToihMnzOFS9YvYtGa+bgS4sbqo0mSNEFkZmZy6NAhfD4fFouFnTt3snDhwvEu67wo57pD0KjsWFEMQBWwFmgFjgI3CyFOndXmDeB5IcTvFEXJBXYCaeJ9ilq4cKEoLCwc1VpPFZXx1I+epPBkOd2DgwDoFB1GvUqiw4nT6EAIBU0IIlGNkBYmHI0QPatMs0HFFWMja1I806emEB8fi8GoUl3fw8mTjXS29wEwJT+bS9YvYvHaBSSkxI/q55AkCcrLy8nNzR3vMvjud7/L888/j8FgYN68efz617/G9DHNTZ7rGCiKUiSE+MBkGrNQOF3EZuARQA88IYR4UFGU/wAKhRCvnD4b6VeAnZGhpW8IIba/3z7HIhT+RtM0yksq+ctTL3Ng92HaevtHPgcKOp0OvaJH1RkwqSoGnQHl9D86nQ4dCigKmqbBWcNPmaluCublkJnqpq1ziJOnWmlrHZn4mpyXxaorlnPJ+kU4nPYx+UySdLGZKKEwniZsKIyFsQyFs0WjUSoPFvPaEy9wuKyG9r4BPGddfKLqDah6A6AQFQKdokNBQa/TY9KrGE8/L4QgGImgKApOh5W5eZnkTktjcNDPsZNNtHcMoNPrmLM4j9VXrmT+ijkYTeqYfz5JulDJUPhooXBR3WTnw9DpdOQum8+U+Xm0HTiBr7uP3s4eautbaOzsob6rh4bOHno9w2deo+r1GFHxaiE8YmQ+QafoUPUGLAYTHq+fXYfK2H24ApPBwKSUeC5ZkkM4HKWipIbjB0qxWIwsXDGbglXzySvIJybOMY5HQZKki40MhQ+gWsxMWjtyJm1U01gcDOPvG8TX0YOvu5/2hhZqqhqpaeygsbOXzqFBerwewpoGgF7RAyYiUe3Mnd+MegOCKJVN7VQ2taMoCjaLiYw0F6Cwf2cR77x5FEVRSE1zMT0/i9x508gryCMhMxVFd9GsTiJJ0sdMhsKHoNPr0Vn1qFYzMelJAGRHoywOR/B19dNTUUfryXra67rp7Bukw9NPeUcrtT1dCCEw6VXirA4UdHjDAaJCoNfpiDFaERFBbX0X4ehImLji7ExKT0AROg7sOcmu7ccASEhwMCNvErOXzmTe6kXEuJ3jdjwkSbrwyFD4iBSdDoPJSExGEjEZSeSsX0ooGKRx/ymqdh4nLzkDfzhEWUcLx5sa6fCMnIUUb3fgssQSCEcZDHjRRBSDTo/bYsdqNBPyRTheUo+iKORNT2fuvMnoFD211R0cOVzJ3j2lKP/9PFk5ScwqmMGC1YuYNmcqeoN+nI+IJEmfZHKieYz11LVz8Bcv4xnwEY0KWgf7OVxXT+tgD/5IAKPBQEZMIlaDBZ8WpNfnIRLV0CkKDqMFVW8gFNGICoHFaGROXhYbNs9Hp6qcOtlIZVkzzc09CAEWi5FZC6Zx6TWrmL9sjgwI6aIkJ5rl2UcTnhaOUPj4K3RWtRIIRwkGI3QPDVPb10VpayP9fg8KCon2OFId8ViMKsKg0To4SJ/HA4BOUTDqVYQQ6BUDiY4YZk/LZNGi6cQk2unoHqCivJmSk034/SHsMVaWritg9ZUrmJyf/a6rtCXpQjYRQuH222/ntddeIzExkdLS0jOP/+QnP+GnP/0pBoOByy+/nB/84Adj8v4yFD4BolqUkmffovNkLca4GHpbewkENBSdoC8yzO6KKmra2oiKKDEmG26rk9SYOPKyUhBJdk6U1tDS2oEn4AfAoOjR6/RYVRMZTjcZcS4yMuPJnJFEUB+hqLCW0tIWIhGNxNR4Vl5+CSsuW0pKZtI4HwlJGlsTIRTeeecd7HY7t91225lQ2LVrFw8++CCvv/46JpOJrq4uEhMTx+T9ZSh8QgghqHh5Ly0HT+Gamk7IH6ClvJVQKIrRqCcmXuXtqhr2HD+F7/Q1ETpFIcZkY1J8PCs3XEJiVhpv/XEnNU3NDAX/NyAMOgMZbjfJ1limZKWwZFMuDreVE0W1HDlaR01NO0JAxpQ0lm9cwrINi0hMSxjPwyFJY2IihAJAQ0MDW7ZsORMKW7du5c4772TdunOu+zmqZCh8wtTuKKTuraOgKNhT3Qz3D9PbNoCmCaxWA8lpDoYMUV4/cIrKqkY8AR/ekB9xej3B+Dgny1ctwdvUT1tzFx3D/QS1CAoKBp0em9FMZqybJQUzWH3lbKx2E31dgxw73kDR8UaaGjoByJqWwdL1i1hx2RLik93jeUgkadSc/YX4ux8+Q0Nl8we84sPJmp7BZ//15g9s9/ehMHfuXK666iq2bduG2Wzm4YcfpqCgYFRr+xt58donzOR1C4nLTqHtWCVDTV3gC+CKNeEPanh9Yeqq+7HZVW5aPIuY6y7lWEUnB/eeos/jwRv24Ql4eeWlN4kKQawzhrR4N/qQgj8Uoss3yEBgmKGgl8o32nlz3zFWrZjNFdcvZv3Guaxdk09Pj4ejxc0UFdXx7M9e4NmfvcD0OVO59StbmTZr8ngfHkm6IEUiEfr7+zl06BBHjx5l69at1NXVTbj5PtlTGGdCCHy9Q3SV1NFf10pffTtDA34CwQhCgNGoJyndQXyKg5L6Hg4cqGbYF0RRYDjoZTA0RJd3kHAkgtGgkuVMItZsp9M3QJ935Gprg6LHajSzZGEu69fPYerUZNCiIARdA0H2Ha7j4NvF+P0BlqxZyK1f+RQJKbLnIH0yTdTho02bNvGtb32LVatWATB58mQOHTp0Znnt0SR7Cp9giqJgi48le/U8slfPQ4tE6ClvpPL1Awy0D+ALRGiuG6C1cZD4ZDu3X19AcW0XBw7XYDfZSXK4mBon8ISHGYx6qGpvIS0unnlJUwhHIwwKL1XtHQwFvby1v4jdB0/gtNqYm5/NpZfmk5uXxrUbc7lsTS4vbzvJgZ3HKNpbzGU3ruO6O67EYjWP9yGSpAvC1Vdfzdtvv82qVauoqqoiFAoRHz/xVkqWPYUJKhqN0nKojJpth/APB/AHNYLBkaudY5xmzDEqhXXd1FS1YlYNxFrM+IMRWj3dVPY0ERcTw9LMPIxRPXodaDYdFR2tNLePzCfoFR2qzoDTYidvSjqrVuUze94keobC/PHPhyk7Xk2M086nvngta69ZiU4urSF9QkyEnsJNN93E7t276enpISkpie9973vceuut3H777RQXF2M0Gnn44YdZs2bNmLy/nGi+gIX9Qaq3HaTtSAWRsEYwHMUfiKBpAkWBgF5Q0tjJ0KCXeIcVp9VCTVcXxW3VoMCWJUsxDCtEIlFMBj2WOCudUS8nKqoZHPSgKAqG00uCZycnsvX6S5gzL4va5n7+9PwBWhq7SMlM4vrPX8myDYvR6WU4SBPbRAiF8SZD4SLg6ejl1DPb8XQOIIRACAhGogSCEYJBjZa+Qep7+tG0KG67BZNFx67yEoaCPmamZrNk+jQ8AwFCIQ0FsJiNKG4zjUM9lJRUEoloZ85eSnHFcduNq5i3MIfiE028/toxujoHSEhxc/VnL2f1lcsxqHLkUZqYZCjIULhoRDWN5neO0VZYyXCvZ+S2RAojN/cRgu4+H01dA7QPevAHw6gGhebhDpp7u0m2u1iUNZ3FiyfT1TFES1M/0ahAr1OwxVgJu41UNDRSU1V/5o5yMRYLG1bP5bprl1NV3cG214/R3NRDrMvBFbduYsP1azBbPp47SUnS+ZKhIEPhohPxBxnu7qfl0Cm6SurQQhFQwKDq6B8I4vWF0VRBZWMXnQPDdAz30DLUiUU1kROXyjXrF1OwOo+aEw2UFbfQ1+cDwGpSSZuaSnvIw959RfQODSEQ6HQ6rtq0mNs+dxlVp5rY9loR1VVt2OwWNn1qLZfduI6YuJhxPiqSNEKGggyFi1okGKLtWBX1O4sIeXwIIRj0hAiFoyQkWhn2BSlv6KaktYWG/nZ84QAmvZF5Wdl85b7bSJ+RTkdFLYffKqW2sgvESDjE2CzYkpzsPXaCivYWIlENm8XM3Xddx5rNyygvKuPNV45QcqIRVdWzZM18rvzsFiZNzRjvQyJd5GQoyFCQTuupbKT2jYMMdw3Q1x8gFI5isxqwWlU8niAVrd0cb26m3dONJ+jDZFDZuGgu9/zHl3GlumkqLOHQa4VUl43c+MduMWHVGwihsbemkvahfgSCjOR4vv3QveTOnkLV0ZPsfPUQRw5WEg5r5M7KYsMNayhYV4DRKIeWpI+fDAUZCtJZhBD4u3tp2nGQiiONeIdD2KwGLCYDwZDGgDfAqZYu6ru76RjuZiAwjFlVuX7zKr784Fcw2qw0FZ5iz/N7qCtvx2DQEe+yQzBKc38/R5pr8YcDCGDBrOn8+0++RWKii9byana8uIf9u0sYGvKTkuZi+doFrLpuNfGpSRPuqk3pwiVDQYaCdA4Rf4COw8cp3X6C3i4f7lQnajRMwBcmFNJo7fdQ1tJFr9dDh6eH/sAQU5IT+fd/vZ3ZW1ahWi3UF1ex68ntNFa2YzIbSE1xMtzv42hdPQ0D3YSjEQw6PVtWXsLaK1eTnpeBUDTeeXkPB3afoK2lF4fDwtJVs7ns1stJy0kf78MiXQQmQig0Nzdz22230dHRgU6n48477+Tee+898/zDDz/MfffdR3d395hcwCZDQTqnqKbRf6qaoj+9Q3f7MAlZCThTXHgaWhgeDBIMa1R19FDX0U+vf4DGgTZUvYFPLV/CFVesZNK6JZhiHVQXVbHziW10NHRhd5jIynJTUd3GweoaPCEfmogyIyGVvMR0TFYTiTnJxKQ6GRgapKK8nvLSJgwGHQuW5rLlM5czfe6M8T400gVsIoRCe3s77e3tzJ8/H4/Hw4IFC3jppZfIy8ujubmZO+64g4qKCoqKimQofFQyFD4cIQTe1g6OPvUmHY39RDWBalaJdVsJefxEQhpDgSAnGjvoGBikrr8FXzjA9MQMrl48l/xZmaQW5BOXN5mKw1W8/dRb9LX34Yq3kZ4Zxyt7jtHQ3UU4GiHd7WbT4sWEPEG8/SPrLsWluYmbEk9DQzOFh6sIhyJMz89ky62bWbS2QA4rSaNuIoTC37vqqqu4++67Wb9+Pddffz33338/V111FYWFhTIUPioZCv+c8LCXzsJSWour6escZqAvQFSLYlB1KAIUBVoHBilp7KJhoJVubz9Os5356VOZMyWVvGmJJOVm4549nVPH6tn3pz14ej0kpMTQNtTLwdJqgloIq2rkqiWLmbNyHr7hILVHKgl4/MQmOclaPIWmpiYOvnOKwQEvM/Iz+cy915MzNw9FLqMhjZKzvxD/+3s/obKsZlT3Pz1vCt/87j3n3b6hoYGVK1dSWlrK7t272blzJz/+8Y/JysqakKEgL0u9SKh2G6krFhI3PYu+kxV427sYHAjR2+1loHsYEYVEm4OVM6wkttsob2+lYaCNffUl9HiGKKvtZlp5B/kna4hLdfPpezZTVtbOiV0nUL0qs5Izqexpwxvy8/y+fTQ2dTArO5t5G+YTDEaoOlDGiVcKsbscfOZfrqaptYU3XznIv3/xEdasm801t23AmZaGwWaXvQfpgjE8PMx1113HI488gsFg4MEHH2T79u3jXdb7kj2Fi5AWCuNpaKL/VDWRYS9RRUd/zzCttf0E/BGEEHQNDXOypY2K7gZ84QAxVhuptnjSYuKZPimB/KkJxMZaiJ2aScgZz4ldJzl54CTHG+oYCAyPzDOkpLIgOQurw0ruunnozCqlO4rpb+vF4rAy56rF7H/nKEX7S3HEWLn2hqUsvXQWpjg35vgkdAb5m0X68CbK8FE4HGbLli1s3LiRr33ta5SUlLB27VqsVisALS0tpKamcuTIEZKTk0f1veXwkfShCSEI+/0MnKpiqKYREdUwJcXTeLyRzvpeBAo+f4iK9m7KOlrp8fXhCfpQDQZSbG4ynInkZ6Uwa1oiCWlupm7dhGJUObq9kMcffpL69g5C0TBOq42rFy9EeKKoZiN56+fhSHZx5MX99LX0kDojg4xlM/jzE6/S1thBzpQUbvz0ciblpGBOTsPsipc9B+lDmQihIITgM5/5DC6Xi0ceeeScbSbq8JEMhYuciEYJ9PbTebCI8KCHmClZ9PYGqdpehMGoQwfUt/dT2tRFn9+DLzpMc3830aggweZkUlwyly3OJSfDRcLcGSQXzMRgNfPLh37HC394HV84gE5RWDV3Jgtysulq7MdgMpC7dh5RnULRq4eJRjTmbi6gPxrilae34ff6mT0vh/Ub5zBtVg62tEmoNvt4HyrpE2IihMK+fftYsWIFs2bNOrPs/H/+53+yefPmM21kKIwSGQpjQwsE6dh3FF97J5bkBIQzkeLndwGQPC2Z9po2jp5qoa1/CIMeFDXIiZYmvMEgWc4Utiyay7zpySg6Hc6cdBLn5+JB4Sf/38/Zf/A4mogSa7Zx7YbFJFkctNf2YbKZmLm5gLrjtTSXNuKIj2Hh9cs5fOgkh3YU4vcFyMpJYv3GOSxaW4AjPROdQR3nIyVNdBMhFMabDAVpVEQ1jZ5jpQxW1KA67NjyZlD09E4CA8PY4mOxJzspOVzBido2AuEI2SlOGvrbOVJbi8sSw5oZs1i9IAeL3QTRKKa4GNKWz2MgEuGbd36P1q4+DIqehBgnm9bMxeY34OnxEZfiJG1uDiffLsE36CVr3hQKtq7g4NuF7HplL33dA7jjY1i7cQ5rr12DMzNTDilJ/5AMBRkK0igSQjBU00D30WIUvYH4gnm0nmqi7UQtw539CCGImlROVrbQ0jeIzaQSl6jyypFCDIqeJZNyWTdnKu5kJ6qqQyciWBNcuBfk8uzTL/Lnl95Bh4JJb8JiMpI3OYNUox0zKukzEokaVKqPNaCajCzZuoLZ6xewd9tBtj2/g6baNqw2E7fdsZ4V165HtTnG+3BJE5AMBRkK0hjwd/XSvucgWihM4qK5OLIzGWjuon5/KV1ljfgHvXQMeClp7kCLRslMtPNm+QmGfH7ykrK4ZtFs4mwWHClxGHUa0XAEa0oCp7q6+c1Tr+L1BYkx2YhENFAU4mMcTIpxkRXvJmtmMq2NA/R1DpE8JZUNd11BwqQkivae4JlHn6e5voMrr1nEVbdswJqWgV4OKUlnKS8vZ8aMGRdtb1IIQUVFhQwFafSFfX7adu4nNDCIPSuDxCXz0KsqWlijs7SO+oOnqD9eQ2FdGx5/kHSXg+K2Gup7u0lxuLlx2WLSYh1Y4uwkTU/D09yO0KIMGg38afs+TlY0khzvxGF00N8/RFCLoOr1pMXEMSs1ldh4O73dI1dGz7tsAZd8eh1CwP9882cc23eShYun8pk71hGTkYnJlSDvIy0BUF9fj8PhwO12X3TBIISgt7cXj8dDdnb2u56ToSCNimhEo/voCYZq6jHYrCSvWIQlwX3m+cG2Xg4/+Sbv7D1B+8AwKU47Xd5eDjVUYzdamJWSzYLsDDKT4pi6Zg5Rn4/BhjaEAsc6Onlpx2E83gBLF8/CqrNQU91Cz8AAFtXI4uzJOE1mwlqUcETDEWdhxY3LyF4ymxefepOXfvc6mVmJfOmey3ClJGBJSUe1OS66LwLp3cLhMC0tLQQCgfEuZVyYzWbS09NR1Xf3oCdEKCiKsgn4MaAHfi2EeOgcbbYCDzByc8kTQoib32+fMhTGh6exla5DRUQjEVyzcombOf1dv8zrDp7iLz/5C+UNHbgcFlwuI68WFjEcCuCyxDDVnU5uWjJzFmSTe+ls+qua8Hf349EpvFl0kneOlJOY4OSyyy8lPKyx7fV30KJRZk+ezMLcyXQ3dBIIRhDAlJkpLLt2AaVV3fzqx3/BYjErFBadAAAgAElEQVRy972XkzkpAYMjBrM7EdXukEtnSNJZxj0UFEXRA1XAeqAFOArcJIQoO6vNVOCPwBohRL+iKIlCiK73268MhfETGvbRsfcwwZ4+zAlukpcXoNptZ54PBoK88NAz7N5RhKrXs2JeFsdqGthdUUYgHCLJHkdOXBqZCS7mL53G5OnpDNU2oagqtZ5+nn1tP509gxQsmsnqdUt5/tev0zcwSIrTxfW3XI4NhVPvlBAMhImNs7Lx5nl09w3z2OM78A4H+OwXNrFg/iQA9BYrJlc8RqcLnV5eGS1JEyEUlgIPCCE2nt7+NwAhxH+d1eYHQJUQ4tfnu18ZCuMrqkXpPXGKgbJqdKqBhIK5OLIyUHQjQzZCCI7vOs5vH3yaQCBMZkIsk9Nd7Cur4nBDNRFNI8OZQGZMCk67jZlzJpGd5EAVUcI2I7uLy3jt7WMkJMTx+btuZO+bhRwvPIXNaGLV8gI23rSWQ3/YTU9bL3qDjjU3LcYWo+NXj71FXX0X19+0ko3XLCPqH0ZoGoqqYnK6MccnolON43z0JGn8TIRQuB7YJIS44/T2rcBiIcTdZ7V5iZHexDJGhpgeEEJsO8e+7gTuBMjMzFzQ2Ng4JjVL52+4pZ2uQ8fQ/AFsackkLJr7rl5DV0s3T//3M5Qfq0YBJiXEkuyyc6C6muPN9QBkuhJJssYTY7IyKdPF1DQnSekumv0efvH7N/EHQ3z6X67FarbyzC//AlHBjNQMbvnmzXQU11O+rxQhYObKmRRcOZeffv9pSksaue1za1l700aiAT/hoQGioSDodKj2GEyueAz2GDkpLV10JkIo3ABs/LtQWCSEuOesNq8BYWArkA7sBWYKIQb+0X5lT2HiCPt8dBeexNvYik41EDdrBs4ZU9HpR75wo1qU2lP1vPTYK1QU16DXKUyKdxJjM1LYUEtpezNhTSPd6SbZlkCsyY7baWV6TgJpuYn85oW3Ka9tZeXaRVx2zXp++Z9P0tvTT5rTxef//bPEmq289dirRMIa7jQ3V37zWv7/b/yM+pp27vj8OpZfsx693Y42PERooI+I3wtCoBgMqA4nZlc8Brl8hnSRmAihcD7DR48Bh4QQvzu9vRP4lhDi6D/arwyFiUVoUbytHfQcLyE8NIzJ5SRxyXzM7rgzbbSIRtWJGl5+/DWqS+rOhEOCw0ZpRxNFTXV4AgHi7Q4yY5NwmmJJiXew8tJp7Cmr5JUdRWRmpXLvt7/AS0+9TvGRU1iNJm754vWsu2olf7r/KQa7BzGaVNb+n838+tHnaG/p5ktf3MC8tYuxpqYDAi0YIDQ4QMQzhBbwAaAzGlFjXZjjE9CrpnE6ipI09iZCKBgYGRpaC7QyMtF8sxDi1FltNjEy+fwZRVHigePAXCFE7z/arwyFiUkLhegvrWSgohYRjRI7LQf3vJno1f+d5I1ENMoLK3jlV69TV96I02omPy0JVdXRMNjJvqpK2gcGsZlMuC1OUhwuNl2Sj3AqPPb8ToSi46vf+QLdLb288LtXiUQ0Ll27mK/9913s+NmrVOwfOYchLs1FYW09QwMevnzPJqbNm07M5GnoVBUhBCKqEfH7CQ/2Ex4eIhoMgKLDnJiMJTFFntIqXZDGPRROF7EZeISR+YInhBAPKoryH0ChEOIVZeT/vh8CmwANeFAI8dz77VOGwsQlhCA4MEjP0ZP4O7sxWC0kr1z8rusaAMKhMLtf3MeffvYiBkVhVnoSMRYzzkQHzT1t7C2rory1jUg0iqrTkxWfyPL50zhc2UBTWy9zC2ayZNl83vz9W/QMDZGWnsx//PLfCPUN8+aPX8Y35CMS1ajo7SZKlK9+ZTMZ2SnETM9912qrfwuIsNdDoKMNLeBHZzKNrMpqj/m4D58kjakJEQpjQYbCxCeiUYbqm+gpPEk0ohG/YBZxM6a8p13F8Wp+ef9v8PQPk5saT3JsDFanjfTJCQy2dlLe1s7ukirqe7qIRDUMej0p7jj8QY1AIEx8ohs7Kn0DHgyqyt3fuZ21V6zkyAv7OfrifryBAOWdHehVPfd940qSkp04cqZijk94Ty3RqEawt4dAVxtC01Bj47ClyVVZpQuHDAVp3IWGhmnfc5DQwBCO7AwSlyxAZ9C/q01/9wA/+7fHqS9rJDPBSY7bhV7VM33ZDPyNrSgKdHu8vH6gjLbBXrp9/QTCYaamp6CoJtraetDrdJj0KqBjUnY6V968kWWrCtj72+2UHiyjvKsDg17PTTcsY96iSdgnTcKWPumcw0TRcBhfezOhgT7Q6bAmp2FyJ8ohJekTT4aCNCFEIxE6Dx9nuK4JozOGlFVLMTrefcZPOBjmD//zR/a+egC3y0FevAvVYGDKsjyiPT1EfAEwwuETrTR1DNDt76Gqu5WoECyaMQWdzUZJSQ1RIbCazOiiOkxmIys3LmXp8vkcemYPRZU1aELgMJuYMyOTzTetIGfVUnR6/TnrjniH8bY2oQV8I9c6xMVjiotHb5KT0dInkwwFacIQQjBYVUdP4UkUg56kZYuwp7/3nrS7X9rLc4/8GYNBz7z0JMwGlaTcDFyxRryt3ahmPY0dAxSVthOIBOkO9lDW2oLFaGTN3Jl0Dvgpb2zGYjSSk5NFR2sXoWCYzJx08vOm0FbSREdvH4FIBL2iIz0hjvVXr2T5p9ZgibG+pzcghCDY10OwrxvNP3K2kt5qGwkIpwvlHwSKJE1EMhSkCcff3Uf7O4fQfH7iZs3APSfvPV/ENaV1PPK1n2Mw6ChIT4Yo2BNjmb54Gt0nKtGrBjQR4eCJFjq6hzFZBVXdzVR3dBJvtzM9LZ2Klk5CkTAL581i1uJ8DuwspLWxHb1eT+6sKRiDgv7Ofvp9fgQQYzazYGEen/72LcQkOs9ZeyTgI9DTRXhoEBEJg6KgOmKxJKZgsNrO+RpJmkhkKEgTkhYI0vbOIQKdPZjjXSQtL3jPcFLl8Wp++JWfkJDsYn5yPAFvCNViZMF1y+g+eoqwL4BqMdDQ3s+x0nZQBLEuPfurKmnp7cNkMGAzW/EHwyTExvHAj7+BTqdj+0t7OH6ohIG+QVSjSlZGCsIbYtDjJ6RpWFWVhQX5/Mv3/wVL7Lm/6KOaRtgzSLCvh4jXAyjYJ03GGBP7MRw9SfrnjVkoKIpiAwJCCO2fLe6jkKHwyReNRukvqaS/tAJ0Cu55M4mdlvOupSf2v36QJx78PdNm55AfF8NQjwcUhYU3rUbxDtNZXIWICkJRjcKyVjp7vKQk2HHG6TlYUUNxYxORaBSDTo+qN3LtNZu477+/jKZFOby7iF1/3U/x4RKGh7yYTCqJsTH4hsNEolEsqsqsvMnc8JUbyJyZdc5JZiEEWsCHp74GoUVOB8O5exmSNBGMWigoiqIDbgQ+DRQAQcAEdAN/BR4XQlR/5IrPkwyFC0egp5+OA0cJD3qwJCeQtHTBu9ZP+vMvXuKNp99i8foF5JhMdDd0Eo1C3mUFzFg9h9o3DtBf0wI6aO4aoriig4gWJTMlloRYM6daWzhQU03fsBcFBZvZyvW3XMGXvv45zBYzoUCIvdsPsfuN/Rw/VEI4HCHe6UALCrSowKKqZKcksemmdczbvAiz3fKez6AFAwzVVSIiMhikiW00Q2EPsAN4GSgVQkRPP+4CVgM3Ay8KIX7/kas+DzIULixaOEzvsVIGq+vRqYaRXsOULBSdjmg0yi++8xuO7S7msk+vIwUdzSfr0DRB+rzJrPzSlQw2tFP35iG8nX2Eo1EaugaprOshHNZIctnISoylJ+jh1ePFtPX2AaDX6Zk9N5ev3X8Xc+bnAdDT2cuffvVn9m4/Qm+fB4vZhEHoAB0WVSU9zsXqq1aw5Npl75l30IJBPHWVRCNhGQzShDWaoaAKIcIftc1okaFw4RFC4G1pp/voCSJeH9a0ZBKXzEe1WggGQvzgrh/RVNnM1nuuJc1hpfS1w4RDGvZ4B+u/eSMWp52OYxU07Cwk4g9isBtpHA5z4lA1wWAEt8PC5LQ4jHEm/rzrMNUdbQS1kf9cnbExbLl2A3d+5Taczlj8Hg87//AyO946RnllCzqdgllvRKfosKhGUmOdLFm1gGWfupSkySlnPoMWCuGprRgJhswcjLFx/+jjStK4GPOJZkVRnMBdQogH/6kd/JNkKFy4Ij4/3YUnGW5swWC3jdz6M97FQM8g/3nnwwwPDnPbN28mf/409j76Iv1tfRgMOmZdsYQZGwuIBIKUPPVXfN0DmO0msq5azb5X9lG48wR+f5hYq4lJybEoBj1HKuqp7G6hxztAVAhUg4Gtt1zNv97/RfQ6HZ66aqqLy3nz7ZMcOFhBOBzBpDeg1xlGwiEmlrkLcll24yqy5k5GURS08OlgCMtgkCae0ewpZAD3A6nAS8AzwPeBW4FnhRD3fvRyz58MhQtbVNMYrKqnt7gUUEhcMp+Y7Awaq5p5+J4fY1BVPvPNG5m5dCbHn9tF1e6T6HQKzsRY5m69lKT8LCpeeJve8kYMRj15N29EdTvZ9dSbHH2ziCFPALPRQKrLji8YYXDYT3Ogm9LmBiKaht1m4+v338W1N12Ov6sTT30Nwx4/Ow9Wsf2NowwNedHrdKg6AxajiSS7g6lTJrH5C1vInj+FaCQyEgyhENbUDIxx8s5v0sQwmqGwC9gDHGRk4bq1wCngq0KIjlGo9UORoXDhE0Lg7+yhc/9RIj4/cTOn456bT/E7J/nlA7/FaFK54e5rWLppMXX7Sjn6h53o9TpMBoWE6RnMvXENfWW1NO45jqIoTL1iOUlzpxMKhjj86gEOvLiXzvZBDHoFp81MIKiBDup8rZTUNyKEIDk5kf/68XeYM2canoZawgP9RBWFI6Xt/OWZXbR39aAAqt6AqlexqkYyU5O47LaNLNm8CG9D9cjqq4xc8GZ0xKLGONGbLXLJDGlcjGYonBBCzDlruxPIFEIEP3qZH54MhYtHxBegfd9hAp09WNOSSFq+iOL9p/jDw8/j9fi44rOXcdltG2g9XsOBX7+B3mhAVQR6ncKUdQtwp7uoeW0fUU2QtjSf7PVLUBSFUDBM6f6T7H9+Fw01HSDAalZRhILJouNwezUNbSO/d3LzpvE/j/8HCbFWhhvqiHiH0RmNlNUP8vyvXqe+vRMtGkXVG9ArOlS9AbvFwsKVc9m8dSUJLhOab5hoKASAYjBgsMVgcrkwOuSEtPTxGdVQAFYBf/t5s+vsbSFE30cp9MOSoXBxiWpReo+XMlBejeqwkbzqElqau3nyoWdpq29n2eVLueW+T9Fb08ben79KOBBCNRvRaRHs8Q6mrppD99ESwkENa2IcU65YQWx6IgBBf5Dq4lr2PfsWVaXNmIx6VEWPXq/D4lB4o+wkvQMDKEDe7Bnc9fXbWZCXhbe5iWgwgN5qpaZqgNf+sJPatnZ6fV4ALKoRBR0GnZ4p0ybx6a9sZfrMSYSH+gl7PSNLZggxshJr+iQ5vCR9LEYzFBqAKP8bCmcTQoicf6rCf5IMhYuTp7GFzgNFoEDysgIiVhu/ffD3lB4qY9q8qdz1X3ei6hTKthfRcLAMX/8wik7BoFNImpqCWQQJ+0IIAc6cVHI2LcWWMDIR7B/2U7i9iO1Pbcc75CPWZkaLRImxmQgZ/GwrKWFgeBiAOJeTy69ex5Z1BSQYQUTCCEVPZXEXhW+fpKGnh+ahfnyBIKpej1Gvolf0JCe5ufb2Lay8ZjloGv72VkKDfSgGFXtmtrx/gzTm5DIX0gUnNDBE2+4DhD1enHlTic2fwUu/fo3tz75NQlo8X/3RXSSmJRCNRGk4UkHlzuP0NXYCoKo6EtLjMCkRtIgAAQkzc8hevxhTjI1oNEpnUyev/PxVKgursNtN6KKAgIwEB53efv56sgRvKIAWHbmYf9qMHD51/TrWLMpF83nxDwcpOdhMc3kHPSEfVf3ddHX1YTYaURU9CjpibFbWXrGcq79wJXotiK+tCaFFMLkTsaako5x1VbckjabR7ClMAgaEEIOnt1cDVwMNwM+EEKGPXu75k6FwcYtGNDr2HcHb3IY53kXKqqUU7i3hyYeewaAa+OqP7iInL+tM++7aNk6+fIDO8maEEBhVHXaHCbNJj06noDfoSF6Yx6RV81EtJkLBMIdeO8ibT24n6AuS4LbjHQoSazeRkWTnncpqChsa0esUFD0Meb0sWbGQ737vHuzRAKH+fnpa+jjxTj0DnR56wn7Kutrp7RvEbrNiEDqimsCkGpi9OJ+VWy4hJ82CIRJEZzJjz8zGYJEL7EmjbzRD4TBwjRCiTVGUuYxc3fxfwGwgLIS4YzQKPl8yFCSA/vJqeo6VolMNpKxcQvdQgEe+9jPCoQj3/fReJk3LeFf7wY4+9v3iVQZae1FNBgynJ6RNZgOqqsdsNzH5sqUkzZmGoih0NXfzp//5E7Un6nC5bRCKommC6dluwiLEC4eL6RwYJMFhpamvB5vVwr9+8wtcdfPlBLo78Xd10VbWTFVRKz1tg7R5h6jo7mDQ48XtdmKK6gkEQmhCoNfrmJafRX5eKjNnZ5I1KxdLUjKKTi7NLY2e0QyFk0KI2af/fhiICiG+cXpNpOK/PfdxkaEg/Y2/p4+OPYeI+P245uQTinHyX1/4ISgKX3/0y2ROTX9XexEVlLx2kFOvH0HR63Cnuwn0DKCFNfQGHRaLAXdOCtOuWoktIQ4tovHOn/fyxm/fQFX1JMXb6e3ykhBvI39KPDtLK3m7uII5kzOpb2ujbWCAhVOn8OV7PsPUS2aiUzR8bS10VbdRVdRCW30fTYN9VHZ34vUHSI534dZbMNjMeEWE7vZeAOLjY5iRn86sxfnMW7UYZ6JrPA6vdIEZzVAoEULMOv33MeDfhBBvnt4+KUNBGk+RYIiOPYfwd3ZjSUkknJTKw1/9OUazyr0Pf5GsGZPe85q+5i72P/5Xhtr7SM7NJDE7keaDpwgFwhgMOqw2laxL5zJp1QL0qoGGUw08+b2nGeodYkZuMu1NAygK5E9L5EBVFQfK67h+y6V09fSx7Z1D2E0mbigoYMmSeUxaPpvYtFh87a30N3VSVdRKY0Un9f19VPd14fMFiLc7yE1LZ9Wn19HQ0kHNyWrqKpsI+EdGZjMmJTJzcT7zls9lxrxpmC3y7m/ShzeaofBjIAVoB64EpgkhwoqipACvns+bjCYZCtLfE0LQe6KM/tJKFEWhX2/hN49tw+608X/+7x3k5E1617LcAFpYo/jFfVTuOIZqNrLgptUMN7TQdLSKSDiKwaAjNsFB/g1rcE3NYHhgmCe/9zS1J2rJnhyPXih0tg2RlOLgeFMtZY1tfG7TcibNncb//Op5Wts6mZedzfrcXDLSkslYmk/CjFRCPZ0MtfdQ+FY1Xa39dOpCnKypx+8LkGBzcMW167j+X7cSDoUp3nec8sMl1FY2U1fTTiQSxWI18bn7Ps2qK5aP09GWPqlGMxQU4FOMBMMfhRCtpx+fByT+rdfwcZGhIP0jgd5+eo+X4mvvoql9kOdfO44rMY7PfvtWpszKxqC+93qAzqoWDj6xDW/PEFMunc2szQWUPLONrtouNE2MnLU0JYXsS+cRNy2DN3/3Fm8/t4s4l5W83BTKTrYTCkco62ukq3+QL16+kslpibxeUc3ruw8RDkUomD6FVTlTSXHFkTRnMimzs4h4uqnYX0vF0WYMNhM9doW9bx8hHImQ4nKxZMV81l23mpw5k9HCQXrr6qkqruT1l49QX9vJ4hUzuePfbiUmIV5eIS2dl1ENBfEBjc6nzWiRoSC9HyEEvq4e+k+UUXqkghe2lZCcEsf1d1/LtIW5WGzm97wm6A1w6Ldv0lJcS1xmIiu/dAXBrm7KX9pLX+cw0ajAZNLjcNtJmT+dIZ2eP//kFSLBEMtXTqG3a5iqig6K2msJRSN846ZNJJgteIJBtlXUsPPQMcKhCIvyZ7AqK4dEu4O4yalkzM+gt7Gdwu1VBLwhpq2fy659hRQXlhEIh1EAt8NBfv5ULr18GbNXzEIEh3jhiTfY9soR3G4Ht39xE3mLZmJ0uuQSGtL7Gs1Q2A28ALwshGg663EjsBz4DLBLCPG7j1Lw+ZKhIJ0PEY0y3NrBrqe38crrRUxKd3HF1pVMXbcUW6z9ve2FoHLncY7/eS961cAld2wieXo6zTsP0XCkisE+P4qiYLEaMJsN6F2x7DtaS2drL8lpLvLzkzhW2MDbp0rQG3R8544tJMQ68fd68IRCvFFexdsHjxMOR1g8J48V6Vkkx8SQuSQXa6yg+O1q2mp6SZySyuovbeHogRO8/eIeqqsa8Hh9AMSYLUyZlM7N92wlrNf45f99ksH+YTZfsZDLtixAtVgwuRIwueLRGeRV0tK7jWYomIHbGbnzWg7QD5gBPbCdkWsVij9yxedJhoL0YYT8QV589E9sf/kgGSlOtmxZwLTLVhKT/P/Ye+8oua77zvPzQuUcujrnDDQaOQeCOYqSSMmyrJHs9co8tkczG8Znzu7snj07403enV17Ze9xlm3JkihREiVSzCQYQIDIodFA5xyqq6or51cv7B/VBAmRlEiKoiC5PufUAQrnvvse6lbd7/3d3/39fsF3bb8+t8brf/Vj8vEMg3fvYtvDhyinMsw/d5KlkQUKuQqyWcbptSGoFVbiea7OxSgWFfqG2zHUEt9+8TgW2cQjn7yVbbu6qOR1CpE4OU3lxyNjvHL6EopSod7vZaihiV2b+jhw705i81FGXptF1yHU00jr1i6ahzoIryd49jsvMHphnPVEClkU6W9v43N/8GmOPXeKiyeu0NHTxO/963sIeKwgCJg9PiyBELLdUbMeagC/oIhmQRBMQBAoGoaR+jme70NTE4UaH5RSocQTf/ckLz72Gk67mYfu38bgPYfw97S/awSxUixz8m+fYWVklmBXI0f+9YPYPA4KazEmnjjO6kSYiqLh8DnwNfnIRRJMzseYXEogCAK+dh9PHz+BTTazo6OLe+/YQseWXnIrMUrrKQqGwcnFZc6NzzA1OYdhGPgdDvYMD3Bk/2asFRPry1nS0SwAZruFxsE2WrZ0kFYVvvlX32NmdglREOhra2XboWGOPf0GFaVCe3cT3b2NdLYH6OoKEWgMYg2EsPgCCFIt7uFfMh+1pfD7QA8wAnzNMAz1I3nKD0FNFGp8GLKpLG88e4Yff+0ZlLLCJ27fxPY79xLasQnZ8s4jnoZhMPHiRS5+/zUks4l9X7qTtl19GIZBanaJ8R++Rmwxia4bBNqChAZaCY8tcOHCLMvRDEWtxHQqXI1HcPrYP9DLkds34a0LUIokqWRyePs6MNobePaZV3n9meNMLiyj6TqyJCFJwsZzbLz0t36nkiQiSCJqRUXXq2nJJFFEkiR0Q0fTdN78XQsCCIKA2Wzizjv387v/9kt09n6s6cpq3CR8lKLwHaACHAfuBRY+7sI6b6cmCjU+LKVCiWvnJnnsq98juhrnyJ4ubrlrOw17d2Dxe951myWxGOH1v36abCRJx54B9nzpDkxWM4auE708wfjTp0muZRAECHXX03FgC1eOj3Dq1VESmQKCS+fs5Awi0OVv4Mj2fnYd6kHPa6jpHK7WBtrvPojV42T24jjf++q3WF7dyNfkMGN1mrE4LFREiVy2Qm49QylVwNB1zG4bktvCwswqmWwOAwOzJOOw2bDbrSCJKEqFclGhUCqSLVezuA70dvDIf/Xb3Hb/0Xcc1a3x68svKnhNBs4YhrHjo3nMD05NFGr8POi6TmQhytf/z28xeXmGwZ4Qn7hnG037d+Bsb0EQ3ykMakXl/KOvMP3aFWweOwd/7z7q+6tpNHRNIzIyydiTp8jEskiSQH1XiLqdfXzjT39ELl1gc2+Ql6ammV5YwWWxMljXyq23DNLbGaQQy2ENeul58ChWn6caczG1zOq5cRLTy1TyJURJxN3owtviJbipkwpWrrxwhflzk6iKSvOWDlr39fPEo88xOTFPdL2azd4iydQ5XTT6/DS1N7KUiHFxbJxIKo5maLidDh745B384b//Pdxe18c6DjU+fj5KUbjwdhH4yfcfNzVRqPFRUMwXeewvHufVH52gvs7FJ+8ZZvMnjuJobnxPx2z46gJv/MOzFFN5Bu7YzrbPHEGSq/v0hq6zfG6csSdPUkgVMJklnHUOXjg5jV7ROLK1lYVsmh+eukg6m6fZHeA37t7PtuFG0itpTDYL3Z+6DWdj6Pr9tIrG+tg84YuTJGZW0MoVJJOEr81LsCuI2e9n4swC02dmqJQUGvpbGLxtG5YGD689d5Jzr11iZmqBSkVFEkVCTjeNLg8ms5npRJiZyArFSglREOnubuP2B46yY/cww9sHsTvsH8s41Pj4+ChFQQPyb74FbEBh4++GYRgfayL4mijU+KjQdZ3jT57k23/6GBVFpacjyN2/fS/b79r7nsKgFMq88Q/PsXxxGleDj71fvJNQX/P19rquM398hIlnz1DOlShWKlyciWB3WLhtTzeVYokXJqZ57dIYfpuT3/7ELezY3kZqMYEgCjTtGaRuxxakn/BzVEoKkcvThC9MkF6MYOgGjoADf7sXR52Lhck4s5dWKGaKiLJE63AnPYc2U9fbyKlXL3Dy2FkunR6lVCxjt1lp9voJmGzE8mkm11dJF/OUtWpaDVEU6envZMeeYXbuGWbPgR34/LUqcb/q1Oop1KjxPoksRnjib55g5ORVCqUKoeYgd3/hDg7cuxezxfyu18ydusa5b72MUihj8zpo391Px94B/O31CIKArmksvHGVheMjzE+tcmUhitdp5cj+PoSywvnZBb536iIOk4VHPnUr27d3kF5JYag63jYvnq4WnK2tWAKBG05IGYZBMZ5h8cQI0dFZyplC1Xpo9+FtdlMqqizNJFmdjFEulJHNMq1bu+g5uJlgbxMvPvkax184xfjlKXRdpz4UoKM+RDaWZTmZoKAUsTlMaCadpbUoijOb/FEAACAASURBVFJBEAQGh3o5cvsBDt+6j83D/TVfxK8gNVGoUeMDEr02w/FvPcO5kWWi61lsThu3fOoQd33uVjwBzzval3NFJl8dYeXyLIn5NQzdwO530b6nn449A/ha6xAEgUw4zjNf/T6nT09S57Ez2BrEE3QxvRrmG6+8gSxKfPGOg+zf1UkxXUJTNEx2E86gE3vQhb2pCUdLC7LjxjoLmqoRvTrL6pkxkrNhDF1HEAUsLgtWl4WyqpOIl4itpFDLKma7hY5dfQwcHUa3yfz4O89z5rULLM+HAXB7nMi6QKlUwW4y0+H34653slbOMLMWZmF+BcMwcHtcHDiym8O37aOxuQGHw4bT5cDusONw2rFYzLXYiJuQmijUqPEhyC4sEz5+muVYnjPjMaZGZzGZTdz7hTu551/dicX67pZDLp5h9sRVVq/MkZiPYBgGNq+T+v4W6vtbCPW18NoTb3Ds0ZfpavHT4nFS1x4g67bxJ3/2dTRd5zN7d7J7Uztmq4Sh6Ri6gWwx4QjacfgdmL0ebI2NWOvqkG22G+5fTGYJX5gkF0lQiKcpxtOoG1lWDcOgpOoUyhqZdAlDN7C57fQe2kzfLVuIJlK8/uJpxkemmbo6S7lUBkASRDx2Oy0uHyGXG7PLRMZUZiG5ztjUPNlM7l0/C1EScTodDGzu5fCt+zh4dA/dvR01ofglUxOFGjU+JJnZRSInz2F2u9C6uvneXz3BxIUp3H4Xn/mDT7H/3j0/dfskt55m+vgo6zOrJBejKIXqJGt2WFhJ51lcjNLfVU/QYqK5O4Rj3xD/7vf/E/lyiYcO7WFPWxMAkklElAQEASSThLPOicNnRzSJyDYblkAASzCIxedDNJmu398wDHRVo5TMkpxfJb2wSmk9STFdoJgqks0p5AoViqVquJHNaaVrZzdD9+/D5LVz/sQIZ167yNnXLpBKZgCQRYk6j5s6mxuf1YrDbsUUNCG6zQhOKxWTRKFYplQqUy6WyOXyTI7NsrJUtUKCoQCHju7h0NG97Du0C7endtrp4+amEAVBEO4B/l+qKTH+zjCM/+M92n0GeAzYbRjGT53xa6JQ4+MgPTNP9OR5LH4vzXffwpXTYzz2F4+zthChuauJ3/pvP8vAjr6f2Y9WUVmfCxMeXSCxECGxGOXq1ArpQgmTJNHgddDR6sc31Ml//vNvkMhnue++Wzi4bQB3RaO4lsDQDQQBRKlaPtRsN2Hz2rC6LIiyiCAKmJxOrKE67E1NmFyud12VK4UCheVlcitrFOIZ0rEca/Mp4pEsZUVDFAW8Pjsdw500bOkk0NfC8uo6f/d/f5Oxy5MoioKAgFmS8blcBOwOHJIZl8WC1WYm1B6gqb+FtuEemjZ1IltkJsdmeOHpV7l8fpTRy+MUCkVEUaC1o4Xe/k66+zrp7u2gq7edjs7W9/Th1Pj5+aWLgiAIEjAJ3AksA2eBzxuGce0n2rmApwAz8JWaKNS4WUhNzhI7fRGTy0Fw51asjXW8/P3jPPX1Z8kmc2zZt4mH//BTtPY0v+8+dVUjsRDl9R8cZ+SNa6RSOSRRoM7twGUz88L4NdaySQCsVgubtvTS09pIi8OBXzcw8ZaFIooCknlDJNxWLA4T4ka0s2y3Y/Z6MPu8mBwOZLsdyWKuWhSCQCWTphhZQ0kl0SoK4YUck2cWSUXTADjtJjwuC56QB097A46WOkZmFnnm8VdYmF0GQBZlTJKERTYTCrhxW6yYVRGH2YwoiTR2h+jb00vPvgEcfi9l1eDEa2c58eppFudWWF5aJRpZvx6tLUoiLa2N7NizlbvuP8reAzswmU3U+Gi4GURhP/A/G4Zx98b7/x7AMIz//Sfa/RnVus9/BPxRTRRq3Exk5hZZP38FrVjCGvQT3L0VwWHnB3/9JMd/dAKlXKGxvZ799+xh/z178df7PlD/I69e5qmvPk4smUMUBEJ1HtKZHLFshnylSLqUJ1GonggXRZH29iYa/B58Vgte2YzPZiHodGLfWGFbnGacdQ7srvdecQuyjGQ2IZrNiGYzhlpBr5SQrVZUV4jRF6+wdHkOTdVwOK34PWZMG0F9ZredgkXm/NQCl65Mkc3kEUURm9WCUTGQRQmr1UxDnRc7MlZDwmoy0dxTR9eWJto2N2N1O7H46xAdLpLxFGNXp5i4Os3S4irLi6tcHZmgVCzhcNo5eudB7n7gVvYf2oXFWqs49/NwM4jCZ4B7DMP48sb7LwJ7DcP4ytvabAf+R8MwHt5I0f2uoiAIwiPAIwBtbW07FxYWfiHPXKPGu6FXNBKjY6QnZtArKo6WRoI7hymUVV747stcPjFKeH4NgK6hTg7cs4fdd+zE6Xb8jJ6rlDIFnvqP/8jcYpRIMo+mGzicNtRyBatZJlTnIZFMEs6kiOVzZNUy6Wyet/927VYLIbeTtoCPjroAnfV1hNpDeJs9yJIKOohmM/LG1pJeUdErFQxVRSsr6IpyvS/JakV0uZkdDTN9bhatorHt7p04bBLZ1Ti5SLJ6jWGwnM4wGUswsRimWCpjMsn4/B50RUcpKAiCQMDnxiWbcUom3HYbbYONDO5uo2VTO47Wzhv8IQDZTI5nnniJV148wYUzIxTyRWx2K0du28+2XUM4XU5cLgcOpwOX24HT5cDpclZPT9VShr8nN4MofBa4+ydEYY9hGP9m470IHAN+xzCM+Z8mCm+nZinU+GWhlkqsXxglO7cEhoGru53gts2IFjOLE0u88sPXGT19jWQ0hSiJbN4zwMH79rH9yNZ3rfr2dvLxNK/+5+9SyhcpoTK/mmI9Ua2jIIkCTZ2NHLp7F5nFKJGxJTRDR2zyoPptJHI5IqsxVpbCzE8voWkaAHVuJx11Abqb6tm2o5eu3hCiYGANhXD39iLb7RiGgaHrqLk8hUiE/PIyWrGEoeoYuk6pWOHiiSUyySL9ezrZes92ZKeTck4hMRsmG46TiyQoJrMsrCcZX40wFVmnomrIkoTb60JEoJAtIgsSdpsVj9VKndXBwHAru+4apGnrZsxe/7v6QQq5As899TLHnn+d86cvk8vm39HmTUwmmbaOFrp6O+jp76S7t53OnnbaO1pqvgpuDlH4qdtHgiB4gBngzXNtDUACePCnCUNNFGr8simns8TPj5BfWUM0m6jfvwvnxomhilJh/NwEx586xdjZcQq5IjanjW2HtnDw/v30Dne9p0CkV2Ic/9PvIUgizQMN5OMpZuZijM+uUypXTwq19DQzuKcfLZ4hOxdBVzVCfS0M3b+Hhk3tpJMZzr5xiXMnLzF1aYL5hVVKSqV6rd/Lns3dHNk3QGNLAFdHG67ubiTzWxOmruvkF+cprC6DKCE7PFQKJc79+BIrM+uEmlxs2dOMbJKQrFZMLiey0wGCTD6ZJ72WIhmOc210hsVInJVkmmgmd92qsdmsGKqBJIi0+QO0uD0M7m5n9/07CQ4OvMNqeDulUpmFuSXSyQyZVJZUKkM2k6OQK5AvFImvJwkvr7G6vEYsGr9+T1ES2TTUx+/+wRe47e5D/2ID724GUZCpOppvB1aoOpp/yzCMq+/R/hVqlkKNXxEMw6C4FiPyxnnUfAF3Twd1e7Yhvq1mQS6T58wL5zj9wjlmr86jazqBBj9bDw5x4L59tHQ3vcORmlyIcO6fniMfS+FpraN9ewdqIsHE5TnOXl4lX1J48ydrtVsIBD2YVQ2rIBJs8hPsbMDd4Mfd4McedCPazYxdGef4D17m8sgEy/EUAtDTVMfewS727eijedsAwa2bbhCHUjxGdmYaQ9dwdvVgq6vnwuMnOP/9Ezh8Dg4+vBOrWUAtFNGKRYwN6wQAQUCyWVE1iex6gfhqgtmZJZbjKVaTGVaSaSqqVs2ZY7HS4fXTEaxj+EgPux++BUd9/c8V01CpqCTjSa6NTjJ5bYalxRVOvX6eSDhGS3sTX/7DL/CJh+/B9DOst183fumisPEQ9wF/RvVI6tcMw/hfBUH4T8A5wzCe+Im2r1AThRq/YmhKheip8+QWVjC5nTQe2YfFd2P0s1JWWJkNc/KZ04ydHSe8EEEURXq3dnP0ocNsPbjlhqA4XdOYeukC0y9eoFIs07Krj57DQ6SmFzj73AVGx9bQDB13nYd8oUw2US3GYzHLtDcGcUoib59SLS4b7gY/rkYf4dU1zp+5zJWFZdazOSRRZHNbI584vJVdd+7BN9iH2VN9frVYID1+Da1UxNnVg72+kYWL0xz7/57E0A1u+8qDtG/vRldV1HwBJZWiks2hFoqohQJqvoBeqVopum6gKAKFtEIqnGJyYZUL8yssricwAFmSaHR56G4IsXVvH56GIJ6mEK46L06fC4ffhcVu+dBioaoq3/nGj/jWP3yfpYUVgnV+vvh7v8FvfunT2GzvrNv968hNIQq/CGqiUONmJD0zz/rZyxiaTnDnFjz93e+YwNSKSiqWZvzCBBdfv8K1M+MoJYWGthCHHtjP4U8cxOl5yzldzhUZ/cFxls9PIEoSvXftovPQZmZeOscrj79BJJrF73ew+/7dpIsaI8evEFmI0NLbzB2fOYKs62SjKfLxLPl4hlwsha7qAAiiQLKYYzK6xtXVVYplhd197Xz27r10b+vG1dmBrbERQ9NIXbuCVizg7OzB3tBIai3BM3/yGJloioa+ZlqGO2nZ0kldZwOiJFb9FJqGrqpU8gXK6+soqQyVbI5KPoeh6ZSyCulonmg4zYtXppiJrKPqVWvDIsv4bA58Ngd+uwO7qZo2QzLJ+Jr8tGxqp3Wog5bBNuze9+fMfxNN03jqhy/wj3/9HaYnZnG5nTz0mw/w8Ofvp6Or7ef7Etzk1EShRo2PGSWbY+2105QTKexN9TQc2oP0Lg5OTdXIpnIszaxw8dXLXD4xSiqWwuF2sPv2Hdz5udtoaHsrhXZqJcaVx14lPrOK1eOg/+49NO3q5eTXn+WNZy+iKCp9ffXc8vlbGRtf5dhjxykXyxx88AD3fflerHYruqpRKSnE5yNEp5bJhBOkV+NkoylKSoULS/NcXllCAA4N9vDQ3Xto7KnD0dyM2eulsLaMXirh7OzC3tBMpaRw4usvEh5bIhOpxlWYrGYaB9toHe6geXMH3ubADcJoGAa6UqGUiFNOplHzeUrJDIm5KFPjYZ4/P0Esk0OQoKKpVNSqSNhtFtqagjQE/NhFM5VUGaGqbXgbfNdFonVLB67A+0varGkax55/nX/4y28xenkcgL6BLu771J08+PDdBEOBD/MVuKmpiUKNGr8EdF0nfukaqWuTG07onThbm961rWEYFPMlEmtJLrx2iYvHR1icWEI2yey+fQefeuQBgg1vTU4rl6YZf+oU2bUEFpedvrt2ERhs58d/+j2mRuaxWmRamtw0ttcxu5JifHQRh9vBp/7wQXbcseMdlothGFRKCpNPn2Lxjaus54scG73GZGQNm8nMge5uDgz34Q7YsTrMWJ0WbC4z7rZG3O0dmNxuQCAdSTB/boq1yWVis2sUktWzIzavg9bhLlqHO2ke6sDmfvcaDYauo2RzrF4c4+lvv8z8YpT1TJ5MsYyma6i6hmbo6MaGlSNAwO/G63Zhl8xIZQObKGM3mWnoaabvwCB9+wbxNf3sib1SURm9NMaTP3iON46fY2UpjCAIbN+9hQc+dSd3PXDrr01Kjpoo1KjxS6QYWWftxFnUfAFnewuhfdtvcOT+JGpFJZvKMXZ+gpNPnWL8whSSLHHg3r188sv34w1W9/kNw2Dl/CSTL54ns7KO2WGl944daA47xx89Rng2gqbpmEwiHreV9XSBbK5MS1cDux/Yx8CufoLNwXcIxOqZq8w88wbO5jpWzRL/9DffZTkaJ+Bwsq+zm3bfW6t+QQCLzYTVYcZV58LbWkewp4VgXzuyzUpsdo3581PEpleJzoapbCTm87eFaNvaRctwJw19zUjv4ehVlQrhkRkWTo2wMLFMLJ4hkSuylskSS+eQZIFAnRtFrbC2Vq2T/SZmWcYsylhlGbfHSXN3Mz3DPTR2Nr5rVT0Al8fJ5u39qKrK5QvXePL7z3LqxHnWownMZhP3f/pO/ss//AJtHS3v/wtwE1IThRo1fsnoqkrs7AiZmTkks5nQT7Ea3sQwDIq5IpMj07zw6MtMXJhCMknc8uBBHvide3H731q1rl6eYfL5s6QWo5hsZjoPb8UadLM8H2Hu8gzLkyuUiwqqrldfWnWl7Q646dvZS//ufnq39+D2V7dcVk5fZfbZN3C1hBj4/J386NFn+Oe/+i7xVJau+iB3b9tMk9+HIYpouk65pFNIF9HUt1bwdo8NT70HX3s9zVu7cbc1sHp1gaXLc0SnV0ksxTB0A8kk0dDXQstwF81D7QTb69910tZUlfRilNVzY6RmV5ibW+PczArhVBaXw8qttw7Ts7WdSDhKLJomkcwRiaSJriXJZPLXj+P+LMwWE0M7Btl9ZDu7Dm4jUO/jzIkLfPebP+LU8fPous7Bo3v43d//LXbt2/aOMctnCyTWU6TiaZLxFKVimd5NXXT0tt40R2BrolCjxk1CIRIjcuJc1WroaCG0dwfS+8jpo1ZUpq7M8NQ/Psf4+Ulkk8SB+/bRv72XjoE26pqDiKLI2tV5Jp87S2IufP1a0SRjD7opGRCLpgkvxSgWyhgCmCwyhbJKpVydMOvbQ9zymVvYffcu1s6PMfvsKVwtIbZ86V5y+SL//Dff40ePPkMuV2BrXwef2D1EyFndCjJ77Mj+AKVihXw8TW49Sy5ZQClW+7Y5zYQ6AzRvaiXY04yqi6xMrrE2tUZ0ZpVsrJpryeKw0rSpjZaNrSZ3yPsOa0bXNAqxFEunr3Lx1QucuDRDLJPHbbdweFc/t3xiH/7OIHq5hF4uAZBNl7hyboGFyTWSayk0peqncPhdBNpD+DtCGGaRsStTjF2eIrIaAyAY8rP78Hb6tnSzvLDKsRdfZ3JyBlVV8Xm9tLe24rTaSSezpBJp1Ir6rmNod9rYvH2Arbs3M7RzgN5N7x2n8oumJgo1atxEVK2Gy2Sm55GsFup2b8XZ1nxDVbX3wjAMZq/N86O//THjF6bQNhywFruFtt4WOgba6BzsoL4xgFQqkwnHKcQz5OMZCvEMSq5YXc2WK6SKColUAVXTsTosOEM+cpk866txPEEPd33pTpq9NhZeOlsVhi/eg2Q2E1mN8fd/8U1eePJVFKXC4UM7+PSBIawVjUq+uj1k8brwdLfiam1AKZZZOj9BdHqN5FoaDLDYTdS1uKlr8RBor8Pe0kJJM7F0eb7qj5hbo5SpRnE7Ai5atlRPNTVvbn+HP8LQDXLxFM/+zQ85duwC8XQeh8VEa52PwYFm9ty5nUBrCFEy0MpFDFVF1w3i4TSrswlW5+JEF+Poqo7ZbuH2L9/LwJEhpq7OcvKls1y7PMnE6DTlYvn6PSVZoqgWSRcyqJqG1WKltbmJzUP9NDY34PJWU234Al6sdiuTo9NMXZtjZmyOaHgdALPFTP9QNx29rTS2NtDYWk9TWwONLfXvWavjo6ImCjVq3ITkw1GiGwFvktWCq6sdT18nZpfzfV1fyBWZujzN9Mgsq3Nh1hajxFbXrwtFoMHP0L5NbDs8zOCOPiRJpJDMEp9ZJTa5RGJujWw0SSpXJpkvkS0oGIaBxW2nWCpTyBZx+V3sPbwZRyKJp62eoX91D7LFjGEYzE0t8Ldf/Savv3QKQRS56669fPLIEHZDopRRKCayYBjIdiuBzT3UbxtAKVeYOXmN8JVZEovV7SO720pbf4D6Dh/2hnrsLS3Ibg/RmTAL56eIzYSJza2hblgzvtYgrcNdNPQ1428NVS2Jje2mcqnMs//8LKeeO83SUgxlIzCu3u+irzPE1j299G7pxuywIpklDHT0cgm1XCG6mOTCy5PEllN0bGnl9kfuwdMQQpAkCvkiM2PzmK1mXB4nVpsFURKJryd4/LtP8+oLJ1iYW0YURbbtHOKh37yfux+49R2J+3RdZ3F2hXOvX2JydJq5qSVia+sU86Ub2vmCXprbG9iycxM79g8zuK3vIw2wq4lCjRo3KXpFIzMzT2Z2gXJ8I012XQBPXyfOthZEWfoZPbyFqmoUMgVmr81x7ewkM6OzLE+voFZUZLNM39Yeth4cYtvhYYKNAQzdIBOOs3JhkujVOWJLURLpErlShVxJQamolFUN3TAwmWRagk627uzh4Fceuu4o1zSNq5cm+Ps//ybnT11GEEVuP7KVh+/bQ3N3F8WMSmZ+hfxqDEEU8PV30rhnCGvASzGZY/aNa8ycuEoumsJsM9HaH6Sp04fZZcfe1IS9qQnZbkcpKqyMzrF0eY7YbJjEUgx9wy8imWV8zQECbSH8bSH8rXV4mwIomsqFl85x4fmzLCyEiaWruZJsFhObexrYsbWN7p5GrD4vJpcTySJjiDBy7CoXj01gtsjsf2CI7h0dyHYXstOFbHcgmm4sMaqqKrHIOhfOjPDy8yc4deI8mXQWu8POXfcf5bNfeJAt2wbfdcwMw6BcLBMJrzM/vcTK/Cqx8Drr0QSRlRhLc6vouo7FamZo5yC7Dm5lx/5h2ntaf65I75oo1Khxk2MYBko6Q2p8hvxyGK1YQpBlXB0tONtbsDfUva/tpbejqhqZRIbLJ0YZPXWN2avzZBLV6mmN7fVsv2Uru2/bQWtvCxhQyuSZ/MFLrM+tkcso5IsK+YpGPF8mnsii6dVJWJZF2gbb2bR/E20DrbT2tyJKIldHJvjnv/0+p4+fx9B1btm/mc9+9jaGbjtCOVUgfGaE9Owyhqbjamugcc8WXG2N1dXz2UnGnj9PcjGKZJJoGainudONxWbC5HJha2zEVl+PZK1GHBfTecJjS8QWI2TWUmSiSTKRFMrGilsyyfQfGWL4vj14Gv0ohRLjr17k7DOnmZpZZiGWQtN1nDYLm3oa2THUQkdHAFEUEU0mcmWDN54fIxXL0bG5if33b8JqrwqhIMnIdkf15XAi2xwIGylNlLJCOp3llRdO8NyPX+biuStUlAqHb93Hf/jj/5rm1sYPNIbR8DonXzrDlfNjTFyZJrYWB8Dr9/B7f/RF7njwyAfq701qolCjxq8QuqaRW1olOz1PMbKOoetVZ3FzI672ZuxN9YgfMC30m3EQC+OLnD12kclLU4QX1sAAX52XrYeG2H3bTnq3drPy0klS04todjeZeIHkYhRd00ipOuFomkyuiKrr1/MuCYJAXWsdnUOddG/tRHKY+f6jT3H8pVOoqsr+3QPc+9Bd7Lp1PzZZJnz6MomJebSSgjXgIbRtAF9fO7LVSnhsgWtPnyUyuVTttz2Iv8GBL2DB6jBj9nqrAhEKIf7EsV6topIKJ4jOrDJ/borlkTl0Xad1axfbHthL42A1SrmcLbB4fpzjT51kbGyB5WgS3TDw2K0MDbRy6z3b8bstKJkcE1fCjI2sYbHK7DraS8eWNmSbGUEWQHvLoSxarFh8ASz+IKJsuv6ZxyLrfO0vv833vv0khmHw2498jkf+zZewfoh6EJqmMzcxz+svnuHapQnueeg2bnvg8AfuZ2PMaqJQo8avImqpTHZhmcJymGI0jqGqCKKIvakeZ1sz9sYQst32gfutlCuEFyOcefEc185OsDS1jK7pONwObv/sLQw1OCgurhLY0oezr5uFE6NExxfJRZIoikoyVyKaKlAoK+iAbDWhlCtUlOpE6Ql6CHWFmFyc5/KVcUrlqgO6rbOZbbu3sG3nIM0WM4TXKaeyIICzpZ7AYDfe7lbSa0muPnOW2NQK5VwRAIfPTqDRha/OjjfkwOr3Yfb5MHu9mD2ed2RVTUdTXPzhSebOTKAUyvhag2x7YB/d+weRNrbl1LLC/OgsL3/3GNdGZliJVbfwuvrbuP3TR9i1u5/I2ByvPXaKbLJAfZOLLTua8QYd1Xu7HUg2M4ZWwahU/48mlweLvw6T23N9i2dxfpn/5X/4fzj1+nnqQgH+u//4b7nj3lt+ri2gn4eaKNSo8WuAVqmQXwqTW1yhGF1HL785CTmqDtqmELb6undNp/HTqCgVEtEU545d4NyxiyxOLuHyubjl0ADdbhPBrQM0HqxGQSuFIvGZMEsnR1mfXCSVV4gm8qTyJXTdwOu146rzUlBUouE4xWwR3dApCyqYddLlAquxBMpGzECoIUhLcwiXScaBgMsk43HaaepqpXPnII2busmEkyxfnGZ9NkxqOV61nGQRb8iJy2PB5bfhDthxBL1VgfD5sPh817ealGKZkWfOMfnqCNlYGlGWcNd58DQF8DT4rr9sPhez58c49q0XmFiOki2Wsdgs7Dm6g1vu3098bIUrz1+golTo2tzM5q0NmMUNv4bVgsntQjRJIOhIJgnRZMLiD2Dx1SFaqgn8XnnhBP/XH/8FSwur7NgzzP/0v/07uno7ProvyfukJgo1avyaoWsahbUohZUI5XiScjKFseF4Nfs82JvqcXW0YvF5PtBqVFU1zr9ykSf+/mnWFiL4/U4ODDWz5/79NB3adUNf4fPjTD/1Oha/ByFUx4WXLhJeXgcDAm4bDX4HZp+bnG6Qq6jEVtZJRFIYhkFBLVExGeR1hYqhks8Xyf1EBTkAh9XC5qEe9ty+ly3bN9HW0sDatQXWri6QWomTj6WvX2Oxm3D5bLj8NmwOc3Widjkxud1YPG4EWWb12iLJ1TjlXIlcPEM+mb2eGPBNJJOEoekkCwVWMxnW0hl0w8DtsNPSEsIlWzCyZWRZYvDAIEP7O5AqZZRMFr28cWxVAMliQTRLyFYzktOG2eFEstowTGa+/vUn+fo//IBiscSmoT4OHt3L/sO7GN6++WNJ410ThRo1fs3RlAqF1TUK4SjleIpyKg2GgcnlxNXdhruzDZPz/WcRVSsqrz/1Bk/903MkIknqA07u+fQBDv3OJ26Iyg1fGGf6x6/jqA/Qde9+Uskcr37nNeYuzyAIAg0hD36bGZMkKkyVKgAAHrlJREFU0DDUSf3OXlYnZgnPrLCymGB1KUmlorLj9h3c8vlbyGRyrC5Vi+Osz62yNDHH3HKEWKaaQ8lsMbNpSy/b9w4zMNRDU0MIIVcmMbtGejVOZi1xPd/SeyGIAgN37GDLgwfQVJXUapzkSpxMJEkxU0BTNVSlQm41TjGRoaLrrOTyLMcSJHM5DAMkQcBjteG2WvHabPjcTmwOK2arGUkSkEQQRRDRkSQBURKRLSZMVhOyzYTJYqJQLnHs3Aij04vML4cxDAOr1cLw8CC7925j74Ed9PR3YrKakS2m61teHwU1UahR418YlVye9NQc+ZU1lORGpHDQh7u7A1d7M5Ll/Tk6K+UKL3z3GM//8wtks0WcTitD+zax9cg2Nu3ux+lxErk0yeQTx8EwQACr103FJHPt6gpLc2tIskRLWwinrmEWBeqHOuk5MohYTpFPZnjtxQkunprF5rTyya98kl137LxukRiGwerpK0y8coaZpTVm0zlmI3GWF8PXLQSzxUxbRzOdfW10dLXSVF+H22rD73VhlkXUfB69kEcvlzGUMuHZBGvzKWxuKzsfPkjrvqEbCiK9nfWJBUYfPYZaVmg5PIxmtXD1ygzXLk+zMLNMfsPfYZGrSficNitetwO/x43PZQej6rfQFBVN1dC1txz0b6esVlhJx1lKxVlKrZMuVQP3Gl0+trd00uELIZkkZLPpukjsevgQPQc2faDvxZvURKFGjX/BlBIp0pOzFMIR1Fx1shFNMpLVimSzItutyDYrks2GyWnH0VT/DqdtqVDiqT9/jKlL0yyGU5QVFQRo72tly/7N9A624zQ0yokMpWSGUiKLkiuQLyrMraSIJPIYBvh9Dvx2C06LTP2mdjp2tWMx6yxPrfDcjy6ztpqmY7CFz/37z1PfXn/9/pVCiaWXz5CYmEeUJeyDXSyVFaYn5ggvR6qvlQiJ9dQNz+1w2gk1BGlsDlHfFKKuzofLLFIMJ4hMRtAVg8Y2H5sOD1Lf00GwsxWL40aLqpzJc+kbz5JZjL71j4KAyWElZxjMrcVZWIkRT2bJF24MQnPYrDQ013Hfb9zO9lu3o+Xy5FdWKMeTKJkcuqah62CYzCBLVfNCMIjEUpy5PMFzr58jkc4S8vu4be8etvX1IWgGqqIycHSY3oObP9R3oiYKNWrUQNd1ipEYucVVtFIZvVRGKyto5TKaosBGhlFBknC2N+Pp68Ia9N/gRyhnciy99AZzV2aZj2RYWM+ztryOYRjYnDaG9g6y7fAwm3f3IwPZ5SjZlRjR+TWmRuZZWkmiVDSsZpmg24bfZcXuseNvq8Pd4GZ6YpETr0ygaToH797Kbb95K3afB8liRZAkcmvrLL54ikIkjmiScTQEcDTW4WiowxLwkMwXmbw6zcLsMol4isR6kkQsRTyeJBFLkt8QxfdCEkVamoP09nUwsG2Awe2b6NvUjd1hI70YIRuOU0plKWcLKNkiSjZPOVtEyRWqVoGmk8yXiOaLxNJ5kpk8qXwBVdepc7nYt3+YocPDdGzrwuWxk18NU16Po6QzqIXqswmiiOxyItvN6ILB8dOjfOsHLzM7t4o/4OW3H/kcn/3CJ3G6PlhRobdTE4UaNWq8A8MwQDcwdA1d1VCLJcqJFNn5JUob8REmjwtPbxfu7rYb0n2nZxYJnziPmi8iBAMs5HUmLs8wMzpHMV9CEAU6N3Ww9cAQO45uo7G9HgyDzHqKMz94ndET10jFs0iigN9lxeOw4rSaEAQBXRaZi6ZYCaeQJJGmVh9tXUHae+tp62vB4nRQiGXJrsQopfIo2QJv7snINgu2Oi++nlaCQ30IslztU9cpFcukEinWVmPks3ny+SL5bIHkyjorF6coZYoosk4OhaXVGKnMWwLS0Biko6cdj8+Ny+PE6XLgdNlxOB3Y7TZsFhMWzUAuqUgllXJqI9dUtkCxXOHczAqTa+sYQIPTRZPHgy/ko3N7D8GOerwNPpweK5JSRE2nUdJp1Hz1/rLDjuy0cnF8lkcff4WLI9PY7Vb+wx//Nzz4mXs+1NjXRKFGjRrvG8MwUPMFUpOz5BdXqGTzCKKIo60JZ2sztvogss2KVlGJnLpI8toMiALujhbMIT8Lqykun5lg+sos66vVCNyGtvqNMqP7cXqcaKrG1LlJzjx5ioXRedSKitksE3Bb8TutWM0yyUyReLZIuqiQLVRP9UiySHOrn7bOAG1dQZpafYiCQKWgUM6WUXJlytkSWlnF1ejG1x1CttmRbHZkmw3JZkOy2pDMluuCARvpOp46w9WnzyDKIsOf3o8uKUxdmWRxfoX55RjhaJJcqUKhWKZULL/jpNSbiKKIL+DBH/Di83vwO53s3tSLuaRy7NWLTK3EMEkSnQE/PpsD3taNKIm4gm48IR/ugBO3S8ZjB5vJQBAFTC4nM+EIjz19god+415u/dR9H2qMa6JQo0aND4Wh6xTC0apPYi2KsZFsz+R2Yq8PYWusQzSZiV0YpRCJo2/EH8h2K9aGOvKGxMjoAiNnJogux5BkiS37N3H0U4fZvHcQQRDIxrOMvHKZ8TeusTJZDaKz283UeWwE3VYkQaRYUkkXSqTzZdLFMtlCNUZDkkWauxvpHe6kb0cnzZ0NGJrG6qlR0rNhbAEXoS1toKsY6o31FARRRLRYkCxWJIsV0WIhlyxy5tETZNaStO7sZf/v3IVklinFYuSWllFTSRBFxLoQJauLTLZAOpUhncySWE+QSmZIp7JkUlnSqQyZVJZIeJ1yqczmrf188ZHPYhdNfOcvH2dhPozTbiXosmMRRcySjEmSMEkykiihqwbGxpaeySLjD7nxei34/Fb8ISf1Ozbj7+/7UONaE4UaNWr83GiVCsVwlHw4SjmRQnlbbITJ7cLR0ojJ5aQUT1GMJSitJ9E2AuwEWSZeVLk8vsrY+DLlUgVvwM3++/Zx6P59NLTVo+s6qWiKSy9cYOLMOGuzYTCgvjlAZ38TLlmksJ6hmC1SqWikCyWyJYVkrnRdJKx2C51buuja0olcLqEsLOGv8zL4ubuwOK1U8gXUYgG9oqArSvXPioKhVDD0quDpus7cpTCzl1axOq3s+sw+GgbbkWx2tFKR7MwsSjKJIMs4OztxtrZez330js9M00gl0nz7az/k2R8dI7GepKE5xOf/i08T9Pp48QevkoilyCQz16PB30QQBFxWMw6LGatswiTJyIhYZROyKLLj9i3c9pWHPtRY1kShRo0aHzmaolAIRymsRSmvJyknqid/zD4P7q52HK1NKJkcucUw5XSGSjaPksmhFMvMLMYZnY6wuFY9LuvzORkYamd47yD9O/qweFykUwXO/PgU46fGySWzWBxWho9uZeuRLSiJNIunx0gvVQvhGBLkigqJXIlYukihUL7hWS1mmUBTgPruJkKtdTR3N9Pc24y3bqO0qa6jKWW0QgE1n0crF4nNhBl57hrFXJnO4Ua6tjchSuKGAAhohTJ6pYIgSVhDdVgCASyBAJL53Y/7KkqFJ777LI9/62nmphdxOO188nP3cP9DdxBqqCO1nmZtOcLaUpRENEkikiC2EiMeSZJMZtH1t4LsTJLIrUd38uU/+YMPNXY1UahRo8YvnHI6S3pyhsJqhMpGsJmtPoi7uwNrKFDN0WRAOZOlFEtQXE8SnltjbGSW2bkoy+Ekmm5gMUm0N/noavXT292AzWVnLZpjanKNlcU4um5Q3xJg6MAArV2NrF1bJDaxjK5qWJxWLCYBQ9colFQKqk5RN8il8+TzZfKqTi5bvL6Pb3fZaepporWvheaeZkJtIWxOK1a7FYvdglpWOPW1Z1kZmccVdDF42yaCbV7QNPRKBbVQQCuWr5/cAkAUkSxmZLsdk8eNxRfA5PVeD/ozDIOTr5zh2197nItnRjEMg03Dfdz/8J3ccf8RXO4b62loqkYxX2JpZpm5sXlW59eIrMQ4cOcubv300Q81VjVRqFGjxseGYRgUY3EyU3MUwlG04sbZfUHA5LRXU0+4nJjdLsweJ9a6AIYBiXCc8y+e49q5ceYmVygUykiSSHdniM39TXQ2+ygXyszNxphdSJLLK4iiQHODi9ZmD3arlfR6AVVRMdvM+FuD2Dw2yoks5fRbUc46kFE00gWFdL5MMlUglcjdsBJ/E9kkY7FbkCQRvaRgEkQ8ATf9hzbTtauPuqYAdpeVSiJOOR5HLeTRywq6qt4oFIKwkR/JjSUYxOL1ItnsLMwu871vPMGJV84SWY0hm2QOHN3NJz5zF3sP70T+CKOY305NFGrUqPFLQdd1CitrlNYTVHIF1HwBtVhELZRgYxIWLWb8Wwbw9ndfrxmhlBWunRnn9AvnuHpmjHymgMVmYduhLey/aycdXU3MnJ/gyvFRFidXUcoqFquJ9jY/QbcFraCilDUkSSDQGqBxqA1BkknOrFBKZtDVjchiw8AwQNcNsoUyuWIFXZIQPU5w2FE1HaWooJQUCtkCidV1CrkbA9Rks4wn6MFkMSHLEpJJRpJFJEFAMFREdBw2Ew67CZfLgtNlxeWx4fLasXpcmL0eJKebkbFFnvz+i5x74zL5XAG318WhW/dwy10H2H1gG1ab9SMbl5oo1KhR46bAMAwMVUNTVSob20iZmQUqmSyyw05w+xDOjpYbAuYq5QrnXr7IqefPMnlpGqWk4PI62bJ/Mz3D3TS11xObX2Ps9WssTyyhazrekIe2tiA2tYKSLSMI4PZa8QZs2IMeZJsVXTfQKhqVYplKvohaUtA1A03V0bXqXOho8NO4c4D67f0IoohW0cisp7nw+Almzk5QyJfQzRKiw4Yoixgb/0dN09E1HV3VqFRU8qk8Skl5x+dhs5mw2cxYbSasNhM2hwWzzcxqKsXY7BLzS2GUSgVZltm0pZd9h3ay/8guGlvrsTvtyOYPlzyvJgo1atS4adHVaknS5NVJ1HwBs9dNcOcwjqb6d7TNpnOceuYM5165yNL0CuUNh7LJYqK1p5mm9gbUokJ6JU42mkYQBVp6m/HbzQiZPALg8NqRZAHRMJCk6rFWSRKRZLFaQAdQyxWUYgW1ooMBggAm+//f3p3HyHnXdxx/f+fe2dnT6/sOccAhsUlrQg5oUpq0KSAoKoijIKBUUUuRKC1CQKW2IFWlQipUopUaASqqKlqOqk1bEEXcAgRxEhMn+MSx1+fu2nvvnM/zfPvH82S8cXbX67Un6818XtJo53me3zzzm5/s+cxzfZ8cHf09dG1eS/fmdXSs7uXQ9/Zz9PtPUJ99YNuMXDFPvtRBvlSg0F2kc6CHTKmDwIxqvc70RJnp8+NMXRinOlWmWq5SK9epVOpUKw0ajeRMKI+YrJUZr04zWpmmHsan1XZmC7zxTffzvo//4ZLGXKEgIte9KAgZP3CU8YNHCKs1CmsGWP2rt1IY6H9O2/hOchVOHzvLgb2HOHX0NGdPDDF0cpgwuZaiu6+LrlKRYKaKBU5nqYP1G1fRV8yRMyOo1IiStk0G3QNd9K/voaMrR1CtUx0vUyvXCRvPPeZgKSOVzVIPnQjDMSIs3goJo3hLpFqnOll51sVu+WKeQilPoZinf9Mqutf2kS3mSeWyOE69PEN1cpJGuUKjUiOoB9QbAaeGxzlw7DSHB8/ymte+ivd87MEljbVCQURWjLDRYHT/QSYPHyNqBBQ3rGXVbbdQ6O9d8HVRFDEzWebo/mMcfvwIxw8OMnj4FNWkSF0+nyODkU2lKHUXedHuF7Fzz01s2r6OxkyV6sQMEydHGDp4gqBSJ99dZOsdN7PlFTsp9nVRm5xmeN9BJp8+TXVimijZzRQ5eBjFJzTN8xXq7jSCiKARUW+EBCE0GiGNenIxYDZNZzFDZ2eWdHpx9+Jeu2sbN73xvsUO67MoFERkxQlrNc7v+wVTxwbxIKC4cR0Dt91Cvq9n0euo1+oceuwIT/3sACcOneTEoUFqlWfv2zegUCzQv6aPTTs2smH7OjKVBo2hUYLzE5gZq27cyNY7bqZn02pKa3pxj5g8OsjUidPMnBkmrNVxj7/8o8hxDBzCKD6Ggsdv9MyhkmeOmUTA1GSdibEqlXK8a6jUlaOnN0+plCOVmv8GSatu3cHW++68kiG9+JkVCiKyUgXVKhf2PcXU0yfxIKRz8wYGbnspuZ7uK15XrVLj5NHTjJw5z/DJYU78YpDhwSGmRqeoNwKCKCKa9T2YSqfoKnVQymbpymfY0NtFqSNPcaCb7vWr6N4wQGlND9m0kU47YaVGUK4SVKoE5QpBpUpYrccbEAZ4UrvPIfK4jIVH8QHpaiVgcqLG5ESNIIhIpYxST4Gu/k561vTQs76XXGeRbLEQlzjftJZ8V2meT7owhYKIrHhBpcqFx59k6vgpPAzp2r6F1S/ftegbBi247kaDI3uPcGTvYYZOnGPo1AgTF6aoBwFBGNKIIsLkFNrOYoH1A72s6y3RAeQzKcyMXKmDNS/ZzJqXbGX1TZvo6OvCw4goCPAoap5uS8riLQW7+NfDiNrkNJWRUWaGxjh36CQjx0eYGS9Tr8XlL8yg0JGJz1gqZthx/+1svGv3kj6vQkFEXjCCmQojj+9n+vgpUtkMq/fsouuGrVd0L+rLCcOQWrnG0NNDnD58kuETw5w9fpZTx4cYn4jDAiCXTtOZz9PfW6JULJCOIjIG+Wya3tW9bN51A+tu3krX2n6KA91kctnLvPOzRUHI+OkRTj/xNOePnmHi7AVmxqbB4aZ7buHl7/zNJX2+xYZC6+8WLSJylTKdHax/5e1UXnwjwz95lKEfP8rE0eOsvWsPuSXuTrlUOp2m2FVk+67tbN+1HUiOF4QR9Wqd/T9+ih/97094+uAgY1Nlxsrl+LRWiy9aS6dSZE4Mk3nsKPlMmkI+QyGbodTVQdeqbnJdHWRLHWSLBXLdRbKlAmEQETQCgkZI0Aho1AMqMxXKk2XK0xXK02VmJsvMTM5QnirTd/fOa/JZF9LSLQUzewD4eyANfM7dP3nJ8j8F/gAIgBHg9939xELr1JaCSHvzyBl98iBjTx3CI6f/lpfQf+uLL+6qabEoijiw9xD7fvgEYyPj8WN4nKmxuctmXAkzI98Rn7aaL+bpKBaS5wU6inluv38Pu+++danrXt7dR2aWBg4D9wOngEeAt7n7L2a1+XXgp+5eNrM/Au5197cstF6FgogANKZnGPrxo1SGRsh2lejffTP5ni4ypU7SV7jL5mrFBewqDJ0c4dzgEBfOjcaFACtVxs6MMnl+kvLYNJXJGYx4l1cmnaKQz5LPpilkUhRzWfK5DKX+brrX99O/ZQ39W9fSu3kNnat6sAXOSlqM6yEU7gT+yt1/K5n+KIC7/8087W8DPuvudy+0XoWCiMw2eWyQ848+QVi9eIVxKpclW+ok29VJttRJpthBKpcllc2SymVJZy8+T2WzV/2FuxhRGDE1NsWxfb9kZHCY8aExxs6NMTE8zszEzLyvS5mRShnpTJq7Xn8H976ntbfjbOUxhY3AyVnTp4BXLND+vcA35lpgZg8CDwJs2bLlWvVPRF4Aum/YQueWDZTPDlOfmCQsV5JTRCtUR0aZHjzTvJ/zfFK5LOl8nnQhfmQ68qTzeVL5HKlMBsuk47/p+G8qkyaVz5HtLC66n6l0ip6BHm6771eeNT9oBEyNTnHul2cYHhymUavTqDaozVSpjE9TnSzHtZqq9ct+jmuhlaEwV/TO+YnM7B3AHuCeuZa7+0PAQxBvKVyrDorIC0M6k6Fr8wbYvOFZ8+Mb6ST3QKjWieoNonqdsN4gagREQUDUaCTzG4T1OsFohUq9QdRozPNuF2WKHRQ3rKW4YR3FdatJ53NX3PdMNkPf2j761vax866XXvHrr7VWhsIpYPOs6U3AmUsbmdl9wJ8D97h77dLlIiJLZakUmUKeTGFx1zV4fIkyHkaEQUBYqeKNBlEQJgESPzwMCas1qhfGmHr6JJNHjwOQ7++lc+M6CmsGSGUzWCp18fqElIGlsHSKTKGALbK0xfOtlaHwCLDDzLYDp4G3Am+f3SA5jvBPwAPuPtzCvoiIXNbFL/AUqWyG7CLuZxA2GpRPn4vvY31+lNH9Bxf1XumO+CrlbGcnmVKRbGeRTGeRVCYTX+yWSsWPdKr5PJXLxstbqGVrd/fAzN4PfJP4lNQvuPtTZvYJYK+7Pwx8CigBX0kuQhl099e3qk8iItdaOpula9tmurbFO0bq02Uq54YJG43kTmxxaYv45j4OUURQrRFWqoSVKuWhEcITtUUdLxjYs5u+nTe29PO0NHLc/evA1y+Z9xezni+t3J+IyHUqVyqSu3Hbott7GB/3aExP05iaIazX4xCJItwjiOIw8cgprFq4auy1oCuaRUSWkaVTZDriM546Vq9a7u5wfR7pEBGRZaFQEBGRJoWCiIg0KRRERKRJoSAiIk0KBRERaVIoiIhIk0JBRESaFAoiItKkUBARkSaFgoiINCkURESkSaEgIiJNCgUREWlSKIiISJNCQUREmhQKIiLSpFAQEZEmhYKIiDQpFEREpEmhICIiTQoFERFpUiiIiEiTQkFERJoUCiIi0qRQEBGRJoWCiIg0KRRERKRJoSAiIk0KBRERaVIoiIhIk0JBRESaFAoiItKkUBARkaaWhoKZPWBmh8zsqJl9ZI7leTP792T5T81sWyv7IyIiC2tZKJhZGvgH4LeBm4G3mdnNlzR7LzDm7jcCnwb+tlX9ERGRy2vllsLtwFF3P+budeDfgDdc0uYNwBeT518FfsPMrIV9EhGRBWRauO6NwMlZ06eAV8zXxt0DM5sAVgHnZzcysweBB5PJaTM7tMQ+DVy6bmnS2MxPYzM/jc3crsdx2bqYRq0Mhbl+8fsS2uDuDwEPXXWHzPa6+56rXc8LkcZmfhqb+Wls5raSx6WVu49OAZtnTW8CzszXxswyQA8w2sI+iYjIAloZCo8AO8xsu5nlgLcCD1/S5mHgXcnzNwHfcffnbCmIiMjzo2W7j5JjBO8HvgmkgS+4+1Nm9glgr7s/DHwe+BczO0q8hfDWVvUncdW7oF7ANDbz09jMT2MztxU7LqYf5iIi8gxd0SwiIk0KBRERaWqbULhcyY12YmZfMLNhM3ty1rx+M/uWmR1J/vYtZx+Xg5ltNrPvmtkBM3vKzD6QzNfYmBXM7Gdm9vNkbD6ezN+elKg5kpSsyS13X5eLmaXN7HEz+59kekWOTVuEwiJLbrSTfwYeuGTeR4Bvu/sO4NvJdLsJgD9z953AHcAfJ/9ONDZQA17t7ruBlwEPmNkdxKVpPp2MzRhx6Zp29QHgwKzpFTk2bREKLK7kRttw9x/w3OtBZpcc+SLwO89rp64D7n7W3R9Lnk8R/wffiMYGj00nk9nk4cCriUvUQJuODYCZbQJeC3wumTZW6Ni0SyjMVXJj4zL15Xq11t3PQvzlCKxZ5v4sq6Ri723AT9HYAM3dI/uAYeBbwC+BcXcPkibt/P/qM8CHgSiZXsUKHZt2CYVFldMQATCzEvA14E/cfXK5+3O9cPfQ3V9GXJ3gdmDnXM2e314tPzN7HTDs7o/Onj1H0xUxNq2sfXQ9WUzJjXY3ZGbr3f2sma0n/jXYdswsSxwI/+ru/5HM1tjM4u7jZvY94uMuvWaWSX4Rt+v/q7uB15vZa4AC0E285bAix6ZdthQWU3Kj3c0uOfIu4L+WsS/LItkP/HnggLv/3axFGhuz1WbWmzzvAO4jPubyXeISNdCmY+PuH3X3Te6+jfi75Tvu/nus0LFpmyuakxT/DBdLbvz1Mndp2ZjZl4B7icv7DgF/Cfwn8GVgCzAIvNnd26o4oZm9EvghsJ+L+4Y/Rnxcod3HZhfxwdI08Y/JL7v7J8zsBuITN/qBx4F3uHtt+Xq6vMzsXuBD7v66lTo2bRMKIiJyee2y+0hERBZBoSAiIk0KBRERaVIoiIhIk0JBRESaFArSdsys18zet4h228zs7Yts9+Q88+d9vZltMLOvzrd8oXWLtIpCQdpRL3DZUAC2AZcNhaW8PrnS9Yy7v2mu5SLLRaEg7eiTwIvMbJ+ZfcpinzKzJ81sv5m9ZVa7VyXtPpj8av+hmT2WPO5axPvMfv27zewrZvbfwP/N3gpYwrpFWqJdah+JzPYR4JakuBtm9rvE9wjYTXyV9yNm9oOk3Yfc/XVJuyJwv7tXzWwH8CVgz2XeZ/br3w3cCexy99GkEuszhq9w3SItoVAQgVcCX3L3kLj43feBlwOXVkjNAp81s5cBIXDTEt7rW/OUyLgW6xa5agoFkbnLHM/lg8S1onYT73qtLuG9Zlq4bpGrpmMK0o6mgK5Z0z8A3pLcRGY18GvAz+Zo1wOcdfcIeCdxcbgreZ+FXOm6RVpCWwrSdtz9gpn9KDnI+w3iO2bdCfyc+EYoH3b3c2Z2AQjM7OfE97X+R+BrZvZm4rLI8/3qf8YTl7x+bIG2V7pukZZQlVQREWnS7iMREWlSKIiISJNCQUREmhQKIiLSpFAQEZEmhYKIiDQpFEREpOn/AbgEvj5qv4ldAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure()\n",
    "\n",
    "sns.lineplot(data=df, x='total trial', y='P(SR)', hue='agent')\n",
    "plt.ylim([0,1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x1a2a8cfda0>]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XVW99/HPyjzPQ9MmaTrPQ9rQMsg8WFCGywziBR4FQRD04gDqI4KiosigF/Uig4hiLzNlehhUFEHaJp3npnOSNmMzNPOwnj/2SRNKaA/pOdln+L5fr/M62WfvnPPbkH6zsvbaaxlrLSIiEloi3C5ARER8T+EuIhKCFO4iIiFI4S4iEoIU7iIiIUjhLiISghTuIiIhSOEuIhKCFO4iIiEoyq0PzsrKskVFRW59vIhIUCorK6uz1mYf6TjXwr2oqIjS0lK3Pl5EJCgZY3Z5c5y6ZUREQpDCXUQkBCncRURCkMJdRCQEKdxFREKQV+FujFlkjNlsjCk3xtw+xP5rjDG1xphVnseXfV+qiIh464hDIY0xkcDDwJlABbDcGLPEWrvhkEP/11p7sx9qFBGRT8mblvsCoNxau91a2wUsBs73b1mfbEt1Cz97YxNaHlBE5JN5E+5jgD2Dtis8rx3qImPMGmPMc8aYgqHeyBhzvTGm1BhTWltbO4xy4b2tdfzuH9t4aVXlsL5fRCQceBPuZojXDm02vwIUWWtnA+8ATw71RtbaR6y1JdbakuzsI949O6Rrji9iXmEaP1yygZqWjmG9h4hIqPMm3CuAwS3xfKBq8AHW2nprbadn8/fAfN+U93GREYafXzyH9u5e7nx5vb8+RkQkqHkT7suBScaYccaYGOByYMngA4wxeYM2zwM2+q7Ej5uYk8Q3zpjMG+v28dqavf78KBGRoHTEcLfW9gA3A2/ihPYz1tr1xpi7jTHneQ67xRiz3hizGrgFuMZfBfe77sRxzBqTyg9eXkdDa5e/P05EJKgYt0adlJSU2KOdFXLTvmbO/fW/OGdWHg9dXuyjykREApcxpsxaW3Kk44L6DtWpo1K4+dRJvLyqirc3VLtdjohIwAjqcAe48ZQJTB2VzPdeXEtTW7fb5YiIBISgD/eYqAh+cfEc6lu7+PFrh940KyISnoI+3AFm5afylZPG82xZBe9urnG7HBER14VEuAPccvokJuYkcccLa2npUPeMiIS3kAn3uOhIfnHxbKqbO/jJ65vcLkdExFUhE+4AxYXpfOkz4/jLst28X17ndjkiIq4JqXAHuO2sKYzLSuQ7z6+htbPH7XJERFwRcuEeFx3Jzy+eTWVjOz//f+qeEZHwFHLhDnBMUQZXH1fEk//exdLt9W6XIyIy4kIy3AG+vWgKhRkJfPv5NbR39bpdjojIiArZcE+IieLei2azq76N+97a7HY5IiIjKmTDHeC4CZlcdWwhj7+/g7JdDW6XIyIyYkI63AFuP3sao1Pj+daza+joVveMiISHkA/3pFine2Z7XSv3v73F7XJEREZEyIc7wGcmZXHlwkJ+/952ynbtd7scERG/C4twB/juOZ7umedWq3tGREJe2IT7we6ZWnXPiEjoC5twh4HumUfVPSMiIS6swh3gjrOnkqfuGREJcWEX7slx0Qe7Zx5Q94yIhKiwC3dwumeuWOCMnlmxW90zIhJ6wjLcAb57jtM9881n1T0jIqEnbMM9OS6an1/sdM/c96bmnhGR0BK24Q5wwsQsvnjsWB57fwfLdmjuGREJHWEd7gC3nz2VgvQEvvXcatq6tHKTiISGsA/3xNgofnHxbHY3tHHvG1q5SURCQ9iHO8DC8Zlce/w4nvz3Lj7QwtoiEgIU7h7f+qyzsPa3nltDS0e32+WIiBwVhbtHfEwk910yh71N7fzk9Y1ulyMiclQU7oPMH5vOdSeN5y/L9vCPLbVulyMiMmxehbsxZpExZrMxptwYc/thjrvYGGONMSW+K3FkfeOMyUzKSeI7z62hqU3dMyISnI4Y7saYSOBh4GxgOnCFMWb6EMclA7cAS31d5EiKi47k/kvnUnegkzuXrHO7HBGRYfGm5b4AKLfWbrfWdgGLgfOHOO5HwM+BDh/W54pZ+al87bRJvLSqitfX7nW7HBGRT82bcB8D7Bm0XeF57SBjTDFQYK191Ye1ueqrp05gdn4q33txLTUtQf/7SkTCjDfhboZ4zR7caUwE8ABw2xHfyJjrjTGlxpjS2trAvmAZHRnB/ZfOoa2rlzueX4u19sjfJCISILwJ9wqgYNB2PlA1aDsZmAm8a4zZCRwLLBnqoqq19hFrbYm1tiQ7O3v4VY+QiTnJfGfRVP66qYZnSvcc+RtERAKEN+G+HJhkjBlnjIkBLgeW9O+01jZZa7OstUXW2iLgQ+A8a22pXyoeYdccX8Rx4zO5+5UN7Gloc7scERGvHDHcrbU9wM3Am8BG4Blr7XpjzN3GmPP8XaDbIiIMv7hkNsYYbnt2NX196p4RkcDn1Th3a+3r1trJ1toJ1tp7PK/9wFq7ZIhjTwmVVnu//PQE7jx3Ost2NPD4+zvcLkdE5Ih0h6qXLp6fz5nTc/n5m5vZvK/F7XJERA5L4e4lYww/vXAWKXFR3Lp4JZ09WppPRAKXwv1TyEqK5d6LZrNpXwv3v7XF7XJERD6Rwv1TOn1aLlcuLOSR97bz7231bpcjIjIkhfswfP9z0yjKTOS2Z1bR1K7JxUQk8CjchyEhJooHLptLdUsnP3hZk4uJSOBRuA/T3II0bj19Ei+vquLlVZVulyMi8hEK96Pw1VMmUFyYxvdfWkdVY7vb5YiIHKRwPwpRkRE8eNlcevsstz2ju1dFJHAo3I/S2MxE7jx3Ov/eXs/v39vudjkiIoDC3ScuLSng7JmjuO+tzaytaHK7HBERhbsv9N+9mpUUyy2LV9La2eN2SSIS5hTuPpKWEMMDl81lZ30rd72y3u1yRCTMKdx96Njxmdx0ykSeKa3g1TVVR/4GERE/Ubj72K1nTKK4MI07XlhLxX4t7iEi7lC4+1h0ZAQPXVaMtfD1xavo6e1zuyQRCUMKdz8ozEzgxxfMpHTXfv777+VulyMiYUjh7icXFI/hP4rH8Ku/bmX5zga3yxGRMKNw96O7z59BfnoCt/5lJY1tXW6XIyJhROHuR8lx0fz3lcXUHujkm8+uwVpNTyAiI0Ph7mez89O44+xpvLOxmife3+l2OSISJhTuI+DaE4o4Y1ouP31jI2sqGt0uR0TCgMJ9BBhjuO+S2WQnxXLz0ytp7tDqTSLiXwr3EZKWEMOvryymsrGdO15Yq/53EfErhfsImj82g9vOmsxra/by9LLdbpcjIiFM4T7CbjhpAidOyuKuVzawcW+z2+WISIhSuI+wiAjDA5fNJS0+mpv+vIIW9b+LiB8o3F2QlRTLr64oZmd9K7c/r/53EfE9hbtLjh2fybc+O5XX1u7lDx/sdLscEQkxCncXfeWk8ZwxLZd7XttI2a79bpcjIiFE4e6iiAjDLy+ZQ15aHDc/vYL6A51ulyQiIcKrcDfGLDLGbDbGlBtjbh9i/w3GmLXGmFXGmH8ZY6b7vtTQlJoQzW+/MJ/61i6+/r+r6O1T/7uIHL0jhrsxJhJ4GDgbmA5cMUR4P22tnWWtnQv8HLjf55WGsJljUvnhuTN4b2sdv/7bVrfLEZEQ4E3LfQFQbq3dbq3tAhYD5w8+wFo7eMB2IqDm56d0xYICLpw3hof+upV/bql1uxwRCXLehPsYYM+g7QrPax9hjLnJGLMNp+V+i2/KCx/GGH58wUwm5yRz6+KV7GnQ+qsiMnzehLsZ4rWPtcyttQ9baycA3wG+P+QbGXO9MabUGFNaW6vW6aESYqL47VXz6Om13PCnMjq6e90uSUSClDfhXgEUDNrOB6oOc/xi4IKhdlhrH7HWllhrS7Kzs72vMoyMz07iwcvnsr6qme9qgjERGSZvwn05MMkYM84YEwNcDiwZfIAxZtKgzc8Buip4FE6flss3zpjMCysreVI3OInIMEQd6QBrbY8x5mbgTSASeNxau94YczdQaq1dAtxsjDkD6Ab2A1f7s+hw8LXTJrK2sokfvbaRqXkpHDs+0+2SRCSIGLf+7C8pKbGlpaWufHawaO7o5oL/fp+m9m5e+dpnGJ0W73ZJIuIyY0yZtbbkSMfpDtUAlhIXzSP/OZ+O7l5u1AVWEfkUFO4BbmJOMr+8dC6rK5r4wcvrdIFVRLyicA8Ci2aO4uZTJ/JMaYUusIqIVxTuQeK/zpzMGdNyuPvVDbqDVUSOSOEeJCIiDA9eXszk3GRuenoF22oPuF2SiAQwhXsQSYqN4vf/WUJ0ZATXPVlKU5uW6BORoSncg0xBRgK/u2o+e/a3cfNfVtDT2+d2SSISgBTuQWjBuAzuuWAW722t48evbXS7HBEJQEe8Q1UC06XHFLCluoVH/7WDybnJXLmw0O2SRCSAqOUexO44ZxonT87mBy+v44NtdW6XIyIBROEexCIjDL++sphxWYl85akytla3uF2SiAQIhXuQS4mL5olrjyEuOpJrnlhOTUuH2yWJSABQuIeA/PQEHru6hIbWLr78ZCltXT1ulyQiLlO4h4jZ+Wn8+opi1lU2ceviVfT2aQ4akXAWfOG+9W148QYofQJqNkKfxnn3O2N6LneeO4O3N1Tz49c2uF2OiLgo+IZCNlc6Ab/6L852XBoULPA8joUx8yEmwd0aXXT18UXsbmjjsX/toCA9gf/zmXFulyQiLgi+cJ9/Dcy7Ghq2w+4PYc9S57H1LWd/RBSMmg0FC6FwoRP4KXmuljzSvnvONCr2t/Gj1zYwJj2ez84Y5XZJIjLCQmclprYGqFjuBP3upVBZBj3tzr60QifsCxZC4bGQMx0iIn332QGovauXK37/IRv3NvPUlxayYFyG2yWJiA94uxJT6IT7oXq7Ye8aT8v+QyfwD+xz9sUkQ36JE/QFC52vY5P9V4tLGlq7uPh3H1Db0skzXzmOaXkpbpckIkdJ4X4oa6FxF+xZNtCdU70esGAiIHeG04VTeKzTf59aAMaMXH1+UtnYzkW/+YA+a3n+xuMpyAjf6xEioUDh7o2OJqgoHei3ryiFLs886cmjnZDvD/tRsyEy2t16h2lLdQuX/O7fZCTG8OwNx5GVFOt2SSIyTAr34ejtgZr1ThfOnqVOK79pt7MvOsEZidM/Kie/BBKCpx+7bFcDX3h0KZNzk3n6umNJig2+a+kionD3nabKgaDf86HTj297nX3ZUz1h7xmVkzkhoLty/rapmuv+WMZx4zN5/JpjiIkKvtscRMKdwt1fulqhcsVAV86eZdDR6OxLyPQEvSfwRxdDdLy79R7iubIKvvnsaj43O49fXV5MZETg/jISkY/zNtz1t/mnFZMI4050HuDcIVu/1XORdpkT+Jtfd/ZFREPenI8Gvstj7i+en8/+1i7ueX0jCdGR3HvRbCIU8CIhR+F+tCIiIHuK85h/tfNaaz1ULBsYc1/6GHz4sLMvtfCjF2pzZkDkyP5vuO6k8Rzo7OGhv24lPiaSu86bgQng7iQR+fQU7v6QmAlTznYeAD1dsG/tQFfOrvdh3XPOvuhEyJ8/cJNVfgnEp/u9xK+fMYn27l4e+ed24mMiuX3RVAW8SAhRuI+EqBgnwPPnw3FfdcbcN+3xdON4Wvjv3T9woTZryqALtQshc6LzF4IPGWO44+yptHf18j//2E5CdBS3njHJp58hIu5RuLvBGGdKhLRCmHWx81rnAahaMXCRduMrsPIpZ198OuQfM+hC7TyITfJBGYa7zptBW1cvD7yzhYSYSK47afxRv6+IuE/hHihik2DcSc4DPBdqyz03V3la+P2Tox28o3Yh5HtmxEwvGtYwzIgIw70XzaKju5d7Xt9IXHQEXzyuyGenJSLuULgHqogIyJ7sPOZ90XmtfT9UlA0E/urFsPxRZ19itifsPS38TzEMMyoyggcum0tHdy//9+X1REQYvrBwrJ9OTERGgsI9mMSnw6QznAdAXy/UbPB05Sx3An/Tq86+g1MfLxgI/MPMlxMTFcFvrprHjX9awfdeXEdfn1ULXiSIeXUTkzFmEfAQEAk8aq392SH7/wv4MtAD1AL/x1q763DvGbQ3MQW61jrP1MfLnOfKMuhuc/YljYKCYwa6cvLmQnTcR769s6eXm/68gnc21nDXeTO4+viikT8HEflEPrtD1RgTCWwBzgQqgOXAFdbaDYOOORVYaq1tM8bcCJxirb3scO+rcB8h/fPl9I/MqVgG+3c6+yKiYdSsgdZ9/jGQVkhXr+Wmp1fw9oZq7jx3OteeoNWcRAKFL+9QXQCUW2u3e954MXA+cDDcrbV/H3T8h8BVn65c8ZvIKOcu2bw5sOA657UDtU6rvmKZ052z4o+w9HfOvqRcYvKP4bdFJTzYkcq9r3TS22f58okaRSMSTLwJ9zHAnkHbFcDCwxz/JeCNoXYYY64HrgcoLCz0skTxuaRsmHqO84CPtu4rlkPFcqI2vco3gW/ERbDh7UI2bFrA9AVnODdZZYwP6AnSRMS7cB/qX/GQfTnGmKuAEuDkofZbax8BHgGnW8bLGsXfhmrdt9Z55rpfRnTZ38mvWAKVzzj74jMGunHyS2DMPIhLda9+EfkYb8K9AigYtJ0PVB16kDHmDOB7wMnW2k7flCeuScyCKYuInLKIiad+n+88u5J1q5dxy5RGzkmrwFSWwtY3PQcbZ26d/BIn8MeUQM60kF+nViSQeXNBNQrngurpQCXOBdUrrbXrBx1TDDwHLLLWbvXmg3VBNbj09VnuemU9T/57F5eVFPCTC2cR2dnk3FVbUXawO4f2BucbYpKcsfb5JU7Y55dA8ih3T0IkBPjsgqq1tscYczPwJs5QyMetteuNMXcDpdbaJcAvgCTgWc/kU7uttecd1RlIQImIMPzwvBmkxkfzq7+V09LZzQOXzSV2wmkw4TTnIGuhYbsz/LJiudOt88Gvoa/H2Z9a4Kxm1R/4eXMgRmu6iviDFuuQT+3R97bz49c2cuKkLP7ni/NJiDlMG6G7A/atGQj7itKBpQtNpDONwuDWfeYkn0+SJhJKtBKT+NUzy/dw+wtrKC5M5/FrjiE1/lMsHn6gxgn5yjKoLHVWtupsdvbFpgzqzpnvhH5yrn9OQiQIKdzF715fu5dbF69kXFYiT1y7gDFpw1xSsH81q8GBX73+kO6ceZ6wn+/cWeuDWTFFgpHCXUbEB+V1fOWpMhJiI3nimgVMH53imzfubncWIz/Yui8buLPWRDiLkw8O/JzpEPkp/noQCVIKdxkxm/Y1c+0Ty2np6OG3V83jxEnZ/vmg1npP2A969I/OiYpzJkobM38g9HWzlYQghbuMqL1N7Vz7xHLKaw5w70WzuWh+vv8/1FqnNV9ZBlUrPc+roKfd2R+X6vTfj5nvLHAyZh6kjPZ/XSJ+pHCXEdfc0c2Nfyrj/fJ6bjtzMjefNnHk12Xt7YHajc5F2qoVznP1+oElDJNGOSE/ep4T/KOLnTVvRYKEwl1c0dXTx+3Pr+GFlZVcWpLPjy+YRUyUy0Mbu9udBcoHB379oHvt0sZ6WviewM+bo+kUJGD5clZIEa/FREXwy0vnkJ8ez6/+Vs7OujZ+e9U8MpNi3SsqOt6z/uyCgdc6mmDvak93jif0N7w0sD9z0kDLfnQx5M2GmMSRr11kmNRyF79ZsrqKbz27mqykWB67poSpo3w0ksZfWuth70pP4HueWzzTKJkIyJoCo+cOBH7uTN1hKyNO3TISEFbvaeT6p0o50NHDg5cXc+b0ILshqWWfc5G2auXAo7XG2dc/JHN0sTP2fnQxjJrp9dq1IsOhcJeAUd3cwfV/LGVNZRPf+uwUbjx5wshfaPUVa6Flr9OVs3eVE/x7V0FrrbPfRHoCf65nGuW5zmpXauGLjyjcJaB0dPfy7efWsGR1FefPHc1PL5x1+Dlpgom10FzltOqHDHxPl07enIHQHzULYpPdrVuCksJdAo61lt+8u4373trMlNxkfnvVfMZlhehFyv4WftUq58Jtf+gf2Oc5wEDmhIFFUkbNdp4TMlwtWwKfwl0C1j+31HLr4pX09Fruu3QOn50RRvO8t1R7wt4T+HvXDMySCZBa6IzMGRz4yaN0p60cpHCXgFaxv42b/ryC1RVN3HDyBL551mSiIsN0qt+2hkGBv9qZIrm+fGB/YrYn6GcPBH76OE2NHKYU7hLwOnt6ueuVDTy9dDfHjc/kV1cUk53s4nj4QNLRDNXrnJb9vjXOc+3GgZkyY5KdkTmjZg0Ef/ZUiNJ/v1CncJeg8VxZBd97cS1pCdE8eFkxx03QdABD6umEmo1O2O9b6wR+9TroOuDsj4h2An7UrIHgz52pfvwQo3CXoLK+qomvPb2SHfWt3HzqRG49fVL4dtN8Gn19sH/HQHfOvnVO8B+8cIszH37uzI+GflqRunWClMJdgk5rZw8/XLKeZ8sqmFeYxkOXF1OQofHhw3Kgxgn5wY/6rWD7nP0xSc4Sh7kzncDPnQW50zXFQhBQuEvQWrK6iu+9sBYM/PTCWXx+tqbp9YnudqjZ4LTuqz0t/H3roKvFc4CBjHEDrfz+8E8r1GidAKJwl6C2p6GNWxavZOXuRi4rKeAH504nMTZEbnoKJNZC4y5nWuR966B6rfN1w/aBY2JTnJWucmc4rfycGZAzDeICfK6gEKVwl6DX3dvHQ+9s5eF3yylIT+C+S+awYJwuDo6IzgPOxdvqdU7Y9z/3L2QOTos+d6YT+v3hnzEBIvVL2J8U7hIylu9s4LZnVrNnfxtfOmEc3/zsFOKiI90uK/xYC427na6d6vUDj/rygcVQImMhe7LTus+dPvCcnKeuHR9RuEtIae3s4WdvbOKpD3cxITuRX146l7kFaW6XJQDdHVC3Gao3QM16z/MGZ/qFfnFpTus+Z5rzyPV07cSnu1d3kFK4S0j619Y6vv3cavY1d3DjKRO49fTJ7q/0JENra3C6dmo8YV+z0Qn+zqaBY5LznLH5g4M/e4omVTsMhbuErOaObn70ygaeLatgUk4SP71wFiVF6osPCv0zaNZsdFr5NZuc4K/dPLCwOThz7ORM9QS/J/SzpmjqZBTuEgb+vqmG77+0jsrGdq5cWMh3Fk0lNT7a7bJkOPp6Yf9OqPWEfc0m5+u6LdDb5TnIQPpYJ/Czp0C2p5WfPSWsxucr3CUstHb28MDbW3j8/R1kJsVy13kzOHvmqOBdDEQ+qrfHuQO3ZqMn+Dc6rfz6rYNCH2fkTvZUyJrsCf+pzoXdEFzoXOEuYWVtRRO3v7CG9VXNnD41h7svmMmYNC13F7I+EvqbnUnVard4WvqdA8cl53kCf8qg4J/izLQZpA0AhbuEnZ7ePv7wwU5++dYWLJavnjKR608ar2GT4aSv17kpq3az09Kv3ew86rYMTLAGzuid7CmQNcnpy8+a7LT008ZCRGD/vCjcJWxV7G/jJ69v5PW1+yjIiOf7n5vOWdNz1VUTzvov5NZtdlr4tZugbquz3b8cIjjj9DMneEJ/sucxCTInQWySe/UP4tNwN8YsAh4CIoFHrbU/O2T/ScCDwGzgcmvtc0d6T4W7+NsH5XX88JX1bKk+wImTsrjz3BlMzAmMf6ASQNoaPEG/xQn7/q/37xyYaA0gebQn9D1h3/91Sv6IzrDps3A3xkQCW4AzgQpgOXCFtXbDoGOKgBTgm8AShbsEiu7ePv704S7uf3sL7V29XH18EV87bSJpCTFulyaBrqfTmWOnv4VfV+5cyK0r/+hY/ah4p7WfOcEJ/cyJnl8AE/xyk5a34e7NJBALgHJr7XbPGy8GzgcOhru1dqdnX99QbyDilujICK49YRznzRnNL97czOPv7+DZ0j3cdOpErj6+SP3x8smiYgfG2A9mrdOVU7fFCf76cuexbx1sfHVgKgaAhEwn7DMnesLf83XGeIj27wV/b8J9DLBn0HYFsNA/5Yj4R2ZSLD+7aDbXnFDEvW9s4qdvbOLJD3Zy21lTuKB4DJER6o8XLxkDSTnOo+gzH93X2+1059RtdVr59ducR/lfYdWfB45bdC8ce4Nfy/Qm3If6qR/WVVhjzPXA9QCFhYXDeQuRozJ1VApPXLuAD7bV8bM3NnHbs6v5/Xvbuf3sqZw8OVsXXeXoREYP9MUfqrPFE/blMLrY76V4cxWgAigYtJ0PVA3nw6y1j1hrS6y1JdnZ2cN5CxGfOH5CFi999QR+dUUxrV09XPPEci753b/5oLwOt0aQSYiLTYbRc2HWxU4XjZ95E+7LgUnGmHHGmBjgcmCJf8sS8b+ICMN5c0bzzn+dzI/On0HF/naufHQplz3yIR9ur3e7PJGj4u1QyHNwhjpGAo9ba+8xxtwNlFprlxhjjgFeBNKBDmCftXbG4d5To2Uk0HR097J42W4efncbtS2dHDc+k2+cOVkLhEhA0U1MIsPU0d3Ln5fu5rfvbqPuQCcLx2VwwykTOEV98hIAFO4iR6m9q5c/L93FY//awd6mDqblpXDDyeP53Kw8oiI1h7y4Q+Eu4iNdPX28vKqS3/1jG9tqWynIiOf6E8dzSUmBxsnLiFO4i/hYX5/lnY3V/Obdbaza00haQjRXLCjki8eOZbRmoJQRonAX8RNrLct2NPD4+zt4e0M1xhgWzRjFtScUMX9suvrlxa98Of2AiAxijGHh+EwWjs9kT0MbT324i8XLdvPa2r3MGpPKfx43ls/PHk18jLpsxD1quYv4QFtXDy+sqOQPH+ykvOYAyXFRXFg8hisWFjJ1VIrb5UkIUbeMiAustSzd0cBflu3mjbX76OrtY15hGlcsKFRrXnxC4S7isobWLl5YUcHTy3azvbaV5NgozpmVx0Xz8ykZm06EJiuTYVC4iwSI/tb8s6UVvLFuL21dvRRkxPMfxflcWDyGoqxEt0uUIKJwFwlAbV09vLl+H8+XVfL+tjqshflj0zlvzmjOnjWKnOQ4t0uUAKdwFwlwe5vaeWllFS+trGRzdQsRBhaOy+Rzs/M4e+YoMpNi3S5RApDCXSSIbK1u4ZU1e3l1TRXba1uJjDAcPyGTRTNHcea0XHJS1KIXh8JdJAhZa9kSmb2lAAAJmElEQVS4t4XX1lbx2pq97KxvA2BuQRpnzcjlrOmjtMh3mFO4iwQ5ay1baw7w1vp9vLWhmjUVzqLM47MSOX1aDqdOyaGkKIOYKE1iFk4U7iIhZm9TO+9sqOatDdV8uL2e7l5LYkwkJ0zM4tSpOZwyJZu8VM1xE+oU7iIhrLWzhw+21fP3zTX8Y3MtlY3tAEzOTeKEiVmcMCGLheMzSI6LdrlS8TWFu0iY6O++eXdzDe9trWPZjgY6e/qIjDDMyU/lMxOzOG5CFsWFaZqiOAQo3EXCVEd3Lyt27+eD8nr+VV7HmopG+izEREYwpyCVBeMyOKYog/lj09WyD0IKdxEBoLmjm2XbG1i+s4GlOxpYV9lET58lwsD00SnML0xn3th05hWmk58erymLA5zCXUSG1NbVw8rdjSzd0cDyHQ2srmikrasXgKykWIoL05hXmM6cglRmjkklRa37gKL53EVkSAkxUc5F14lZAPT09rG5uoUVuxtZuWs/K3bv5+0N1QePH5+dyOwxqczKT2N2firT81JIjFV0BDq13EXkYxpau1hT0cjaiibWVDaxtqKJfc0dABgDRZmJTMtLZnpeCtNHpzA9L5XclFh16YwAtdxFZNgyEmM4ZUoOp0zJOfhaTXMHayubWF/VzMa9zayvaub1tfsO7k9LiGZybjJTcpOZnJvE5NxkJucmk54Y48YphD2Fu4h4JScljtNT4jh9Wu7B11o6utm0r4UNVc1s2tfCluoWXlpVSUtHz8FjspNjmZCdyITsJOeRk8SE7ERGp8ZrTns/UriLyLAlx0VzTJEztLKftZZ9zR1s9oT9luoDbK89wCurq2geFPpx0REUZSZSlJnI2KwExmUmUpTlbOckxyr4j5LCXUR8yhhDXmo8eanxH+nWsdZS39rFtpoDbKttZVvtAXbWtbK1poW/baqhq7fv4LGxURHkp8dTkJFAYUYCBekJFGQkkJ8ez5i0eNISotW/fwQKdxEZEcYYspJiyUqKZeH4zI/s6+2zVDW2s7O+lZ11rezZ387u+jb27G+jbNf+j3TzACTERDImLZ7RafGM8QT+qJQ48lLjGOV5JMSEd7yF99mLSECIjDAUZDit8xMnZX9sf1NbN7sb2qhsbKNifztVjR1UNrZR1ehc5G1o7frY96TGRzMqJY6clFhykp3n3ORYclLiyE2JJTspjqzkmJD9JRCaZyUiISU1IZpZCanMyk8dcn9Hdy/7mjrY29TBvuZ259mzXdPSSXlNHbUtnfT0fXzod0JMJNnJsZ6/KmLITIolKzGGjMQYMpJiyUyMITMphoyEGNISYoJmimWFu4gEvbjoSOdi7GEWG+/rszS0dVHT3El1Swe1LZ3UHeikrqWLugOd1LZ0sr22leU797O/rYtPugUoKTaK9MRo0hNiPI9o0hJiSI2PJjU+mrQE59G/nRIXTUp8NLFRESN6nUDhLiJhISJioM9/OimHPba3z9LY1kV9axf1B7poaO2ioa2L/a1d7D/43M3+ti621x2gqa37IyOBhhITGUFKfBQpcdF8/czJnDdntC9P72O8CndjzCLgISASeNRa+7ND9scCfwTmA/XAZdbanb4tVURkZERGGDKTYp1FynOPfDw4vxBaOrppbOumsb2bxrYuWjp6aO7oprm9h6b2bs/X3aQn+H++niOGuzEmEngYOBOoAJYbY5ZYazcMOuxLwH5r7URjzOXAvcBl/ihYRCQQRUYY0jz98oHAmysDC4Bya+12a20XsBg4/5Bjzgee9Hz9HHC60SBUERHXeBPuY4A9g7YrPK8NeYy1tgdoAjIRERFXeBPuQ7XAD72O7M0xGGOuN8aUGmNKa2trvalPRESGwZtwrwAKBm3nA1WfdIwxJgpIBRoOfSNr7SPW2hJrbUl29sdvVBAREd/wJtyXA5OMMeOMMTHA5cCSQ45ZAlzt+fpi4G/WrYniRUTkyKNlrLU9xpibgTdxhkI+bq1db4y5Gyi11i4BHgOeMsaU47TYL/dn0SIicnhejXO31r4OvH7Iaz8Y9HUHcIlvSxMRkeEKjkkSRETkU3FtDVVjTC2wa5jfngXU+bCcYBGu5w3he+467/DizXmPtdYecUSKa+F+NIwxpd4sEBtqwvW8IXzPXecdXnx53uqWEREJQQp3EZEQFKzh/ojbBbgkXM8bwvfcdd7hxWfnHZR97iIicnjB2nIXEZHDCLpwN8YsMsZsNsaUG2Nud7sefzHGPG6MqTHGrBv0WoYx5m1jzFbPc7qbNfqDMabAGPN3Y8xGY8x6Y8ytntdD+tyNMXHGmGXGmNWe877L8/o4Y8xSz3n/r2cKkJBjjIk0xqw0xrzq2Q758zbG7DTGrDXGrDLGlHpe89nPeVCF+6CFQ84GpgNXGGOmu1uV3/wBWHTIa7cDf7XWTgL+6tkONT3AbdbaacCxwE2e/8ehfu6dwGnW2jnAXGCRMeZYnIVvHvCc936chXFC0a3AxkHb4XLep1pr5w4a/uizn/OgCne8WzgkJFhr/8nHZ9YcvCjKk8AFI1rUCLDW7rXWrvB83YLzD34MIX7u1nHAsxnteVjgNJwFcCAEzxvAGJMPfA541LNtCIPz/gQ++zkPtnD3ZuGQUJZrrd0LTggCOS7X41fGmCKgGFhKGJy7p2tiFVADvA1sAxo9C+BA6P68Pwh8G+jzbGcSHudtgbeMMWXGmOs9r/ns59yricMCiFeLgkjwM8YkAc8DX7fWNofDqo3W2l5grjEmDXgRmDbUYSNblX8ZYz4P1Fhry4wxp/S/PMShIXXeHidYa6uMMTnA28aYTb5882BruXuzcEgoqzbG5AF4nmtcrscvjDHROMH+Z2vtC56Xw+LcAay1jcC7ONcc0jwL4EBo/ryfAJxnjNmJ0816Gk5LPtTPG2ttlee5BueX+QJ8+HMebOHuzcIhoWzwoihXAy+7WItfePpbHwM2WmvvH7QrpM/dGJPtabFjjIkHzsC53vB3nAVwIATP21p7h7U231pbhPPv+W/W2i8Q4udtjEk0xiT3fw2cBazDhz/nQXcTkzHmHJzf7P0Lh9zjckl+YYz5C3AKzixx1cCdwEvAM0AhsBu4xFr7seUMg5kx5jPAe8BaBvpgv4vT7x6y526MmY1zAS0Sp9H1jLX2bmPMeJwWbQawErjKWtvpXqX+4+mW+aa19vOhft6e83vRsxkFPG2tvccYk4mPfs6DLtxFROTIgq1bRkREvKBwFxEJQQp3EZEQpHAXEQlBCncRkRCkcBcRCUEKdxGREKRwFxEJQf8fucbJNJ69sl0AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure()\n",
    "plt.plot(agent.get_alpha(np.linspace(0,1)))\n",
    "plt.plot(agent.get_beta(np.linspace(0,1)))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ipywidgets import interact\n",
    "%matplotlib notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_alpha(chi_mf, alpha1=.1, A=1., B=3):\n",
    "    #A = 2* (2 * alpha1 + 1)\n",
    "    B = np.log((alpha1 ** -1) * A - 1)\n",
    "    return A / (1 + np.exp(B * chi_mf))\n",
    "\n",
    "def get_beta(chi_mb, beta1=.01, A=.5):\n",
    "    #A = 2 * beta1 + 1.\n",
    "    B = np.log(beta1 ** -1 * A - 1)\n",
    "    return A / (1 + np.exp(B * chi_mb))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "949e9bb7c55943039fc20b4f3858c0ab",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "interactive(children=(FloatSlider(value=0.01, description='alpha1', max=0.03, min=-0.01), FloatSlider(value=1.…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "x = np.linspace(0, 1)\n",
    "fig = plt.figure()\n",
    "ax = fig.add_subplot(1, 1, 1)\n",
    "line, = ax.plot(x, get_alpha(x), c='r')\n",
    "line2, = ax.plot(x, get_beta(x), c='b')\n",
    "plt.legend(['alpha (MF--> SR)', 'beta (SR --> MF)'])\n",
    "\n",
    "def update(alpha1 = .01, Aa=1., beta1=.1, Ab=.5):\n",
    "    line.set_ydata(get_alpha(x, alpha1=alpha1, A=Aa))\n",
    "    line2.set_ydata(get_beta(x, beta1=beta1, A=Ab))\n",
    "    fig.canvas.draw_idle()\n",
    "\n",
    "interact(update);\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "## plot trajectories"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/jessegeerts/Projects/hippocampus/hippocampus/environments.py:693: RuntimeWarning: invalid value encountered in true_divide\n",
      "  c_mappable = c_mappable / c_mappable.max()\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "80"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "g.plot_occupancy_on_grid(df[df['trial']==5], show_state_idx=True)\n",
    "80"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "trial_df = df[df['trial']==5]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Series([], Name: state, dtype: float64)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trial_df['state']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot the pearce plot "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>DLS reliability</th>\n",
       "      <th>HPC reliability</th>\n",
       "      <th>M_hat</th>\n",
       "      <th>P(SR)</th>\n",
       "      <th>RPE</th>\n",
       "      <th>R_hat</th>\n",
       "      <th>SPE</th>\n",
       "      <th>alpha</th>\n",
       "      <th>beta</th>\n",
       "      <th>choice</th>\n",
       "      <th>reward</th>\n",
       "      <th>state</th>\n",
       "      <th>time</th>\n",
       "      <th>platform</th>\n",
       "      <th>trial</th>\n",
       "      <th>escape time</th>\n",
       "      <th>session</th>\n",
       "      <th>total trial</th>\n",
       "      <th>agent</th>\n",
       "      <th>total time</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5544961667901593, 0.5893681385311593, 0.58...</td>\n",
       "      <td>0.900000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>0</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.838377</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[0.005403564814442152, 0.9020770753513905, -0....</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.815209</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.3055120278127675, 0.01005920312884312, -0....</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.806498</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.09748960686700103, -0.25572224121976794, -...</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>[[1.5550365232716035, 0.6795758460662984, 0.58...</td>\n",
       "      <td>0.803223</td>\n",
       "      <td>0.0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "      <td>[-0.07362054018453487, -0.13603059410435517, -...</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>None</td>\n",
       "      <td>0.0</td>\n",
       "      <td>41.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>45.0</td>\n",
       "      <td>0</td>\n",
       "      <td>49.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   DLS reliability  HPC reliability  \\\n",
       "0              0.0              0.8   \n",
       "1              0.0              0.8   \n",
       "2              0.0              0.8   \n",
       "3              0.0              0.8   \n",
       "4              0.0              0.8   \n",
       "\n",
       "                                               M_hat     P(SR)  RPE  \\\n",
       "0  [[1.5544961667901593, 0.5893681385311593, 0.58...  0.900000  0.0   \n",
       "1  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.838377  0.0   \n",
       "2  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.815209  0.0   \n",
       "3  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.806498  0.0   \n",
       "4  [[1.5550365232716035, 0.6795758460662984, 0.58...  0.803223  0.0   \n",
       "\n",
       "                                               R_hat  \\\n",
       "0  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "1  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "2  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "3  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "4  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...   \n",
       "\n",
       "                                                 SPE  alpha  beta choice  \\\n",
       "0                                                  0    0.5  0.25   None   \n",
       "1  [0.005403564814442152, 0.9020770753513905, -0....    0.5  0.25   None   \n",
       "2  [-0.3055120278127675, 0.01005920312884312, -0....    0.5  0.25   None   \n",
       "3  [-0.09748960686700103, -0.25572224121976794, -...    0.5  0.25   None   \n",
       "4  [-0.07362054018453487, -0.13603059410435517, -...    0.5  0.25   None   \n",
       "\n",
       "   reward  state  time  platform  trial  escape time  session  total trial  \\\n",
       "0     0.0    0.0   0.0       NaN      0         49.0        0            0   \n",
       "1     0.0    1.0   1.0      45.0      0         49.0        0            0   \n",
       "2     0.0    8.0   2.0      45.0      0         49.0        0            0   \n",
       "3     0.0   22.0   3.0      45.0      0         49.0        0            0   \n",
       "4     0.0   41.0   4.0      45.0      0         49.0        0            0   \n",
       "\n",
       "   agent  total time  \n",
       "0      0           0  \n",
       "1      0           1  \n",
       "2      0           2  \n",
       "3      0           3  \n",
       "4      0           4  "
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Help on function lineplot in module seaborn.relational:\n",
      "\n",
      "lineplot(x=None, y=None, hue=None, size=None, style=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean', ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None, legend='brief', ax=None, **kwargs)\n",
      "    Draw a line plot with possibility of several semantic groupings.\n",
      "    \n",
      "    The relationship between ``x`` and ``y`` can be shown for different subsets\n",
      "    of the data using the ``hue``, ``size``, and ``style`` parameters. These\n",
      "    parameters control what visual semantics are used to identify the different\n",
      "    subsets. It is possible to show up to three dimensions independently by\n",
      "    using all three semantic types, but this style of plot can be hard to\n",
      "    interpret and is often ineffective. Using redundant semantics (i.e. both\n",
      "    ``hue`` and ``style`` for the same variable) can be helpful for making\n",
      "    graphics more accessible.\n",
      "    \n",
      "    See the :ref:`tutorial <relational_tutorial>` for more information.    \n",
      "    \n",
      "    By default, the plot aggregates over multiple ``y`` values at each value of\n",
      "    ``x`` and shows an estimate of the central tendency and a confidence\n",
      "    interval for that estimate.\n",
      "    \n",
      "    Parameters\n",
      "    ----------\n",
      "    x, y : names of variables in ``data`` or vector data, optional\n",
      "        Input data variables; must be numeric. Can pass data directly or\n",
      "        reference columns in ``data``.    \n",
      "    hue : name of variables in ``data`` or vector data, optional\n",
      "        Grouping variable that will produce lines with different colors.\n",
      "        Can be either categorical or numeric, although color mapping will\n",
      "        behave differently in latter case.\n",
      "    size : name of variables in ``data`` or vector data, optional\n",
      "        Grouping variable that will produce lines with different widths.\n",
      "        Can be either categorical or numeric, although size mapping will\n",
      "        behave differently in latter case.\n",
      "    style : name of variables in ``data`` or vector data, optional\n",
      "        Grouping variable that will produce lines with different dashes\n",
      "        and/or markers. Can have a numeric dtype but will always be treated\n",
      "        as categorical.\n",
      "    data : DataFrame\n",
      "        Tidy (\"long-form\") dataframe where each column is a variable and each\n",
      "        row is an observation.    \n",
      "    palette : palette name, list, or dict, optional\n",
      "        Colors to use for the different levels of the ``hue`` variable. Should\n",
      "        be something that can be interpreted by :func:`color_palette`, or a\n",
      "        dictionary mapping hue levels to matplotlib colors.    \n",
      "    hue_order : list, optional\n",
      "        Specified order for the appearance of the ``hue`` variable levels,\n",
      "        otherwise they are determined from the data. Not relevant when the\n",
      "        ``hue`` variable is numeric.    \n",
      "    hue_norm : tuple or Normalize object, optional\n",
      "        Normalization in data units for colormap applied to the ``hue``\n",
      "        variable when it is numeric. Not relevant if it is categorical.    \n",
      "    sizes : list, dict, or tuple, optional\n",
      "        An object that determines how sizes are chosen when ``size`` is used.\n",
      "        It can always be a list of size values or a dict mapping levels of the\n",
      "        ``size`` variable to sizes. When ``size``  is numeric, it can also be\n",
      "        a tuple specifying the minimum and maximum size to use such that other\n",
      "        values are normalized within this range.    \n",
      "    size_order : list, optional\n",
      "        Specified order for appearance of the ``size`` variable levels,\n",
      "        otherwise they are determined from the data. Not relevant when the\n",
      "        ``size`` variable is numeric.    \n",
      "    size_norm : tuple or Normalize object, optional\n",
      "        Normalization in data units for scaling plot objects when the\n",
      "        ``size`` variable is numeric.    \n",
      "    dashes : boolean, list, or dictionary, optional\n",
      "        Object determining how to draw the lines for different levels of the\n",
      "        ``style`` variable. Setting to ``True`` will use default dash codes, or\n",
      "        you can pass a list of dash codes or a dictionary mapping levels of the\n",
      "        ``style`` variable to dash codes. Setting to ``False`` will use solid\n",
      "        lines for all subsets. Dashes are specified as in matplotlib: a tuple\n",
      "        of ``(segment, gap)`` lengths, or an empty string to draw a solid line.\n",
      "    markers : boolean, list, or dictionary, optional\n",
      "        Object determining how to draw the markers for different levels of the\n",
      "        ``style`` variable. Setting to ``True`` will use default markers, or\n",
      "        you can pass a list of markers or a dictionary mapping levels of the\n",
      "        ``style`` variable to markers. Setting to ``False`` will draw\n",
      "        marker-less lines.  Markers are specified as in matplotlib.    \n",
      "    style_order : list, optional\n",
      "        Specified order for appearance of the ``style`` variable levels\n",
      "        otherwise they are determined from the data. Not relevant when the\n",
      "        ``style`` variable is numeric.    \n",
      "    units : {long_form_var}\n",
      "        Grouping variable identifying sampling units. When used, a separate\n",
      "        line will be drawn for each unit with appropriate semantics, but no\n",
      "        legend entry will be added. Useful for showing distribution of\n",
      "        experimental replicates when exact identities are not needed.\n",
      "    \n",
      "    estimator : name of pandas method or callable or None, optional\n",
      "        Method for aggregating across multiple observations of the ``y``\n",
      "        variable at the same ``x`` level. If ``None``, all observations will\n",
      "        be drawn.    \n",
      "    ci : int or \"sd\" or None, optional\n",
      "        Size of the confidence interval to draw when aggregating with an\n",
      "        estimator. \"sd\" means to draw the standard deviation of the data.\n",
      "        Setting to ``None`` will skip bootstrapping.    \n",
      "    n_boot : int, optional\n",
      "        Number of bootstraps to use for computing the confidence interval.    \n",
      "    sort : boolean, optional\n",
      "        If True, the data will be sorted by the x and y variables, otherwise\n",
      "        lines will connect points in the order they appear in the dataset.\n",
      "    err_style : \"band\" or \"bars\", optional\n",
      "        Whether to draw the confidence intervals with translucent error bands\n",
      "        or discrete error bars.\n",
      "    err_band : dict of keyword arguments\n",
      "        Additional paramters to control the aesthetics of the error bars. The\n",
      "        kwargs are passed either to ``ax.fill_between`` or ``ax.errorbar``,\n",
      "        depending on the ``err_style``.\n",
      "    legend : \"brief\", \"full\", or False, optional\n",
      "        How to draw the legend. If \"brief\", numeric ``hue`` and ``size``\n",
      "        variables will be represented with a sample of evenly spaced values.\n",
      "        If \"full\", every group will get an entry in the legend. If ``False``,\n",
      "        no legend data is added and no legend is drawn.    \n",
      "    ax : matplotlib Axes, optional\n",
      "        Axes object to draw the plot onto, otherwise uses the current Axes.    \n",
      "    kwargs : key, value mappings\n",
      "        Other keyword arguments are passed down to ``plt.plot`` at draw time.\n",
      "    \n",
      "    Returns\n",
      "    -------\n",
      "    ax : matplotlib Axes\n",
      "        Returns the Axes object with the plot drawn onto it.    \n",
      "    \n",
      "    See Also\n",
      "    --------\n",
      "    scatterplot : Show the relationship between two variables without\n",
      "                  emphasizing continuity of the ``x`` variable.\n",
      "    pointplot : Show the relationship between two variables when one is\n",
      "                categorical.\n",
      "    \n",
      "    Examples\n",
      "    --------\n",
      "    \n",
      "    Draw a single line plot with error bands showing a confidence interval:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> import seaborn as sns; sns.set()\n",
      "        >>> import matplotlib.pyplot as plt\n",
      "        >>> fmri = sns.load_dataset(\"fmri\")\n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\", data=fmri)\n",
      "    \n",
      "    Group by another variable and show the groups with different colors:\n",
      "    \n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\", hue=\"event\",\n",
      "        ...                   data=fmri)\n",
      "    \n",
      "    Show the grouping variable with both color and line dashing:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\",\n",
      "        ...                   hue=\"event\", style=\"event\", data=fmri)\n",
      "    \n",
      "    Use color and line dashing to represent two different grouping variables:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\",\n",
      "        ...                   hue=\"region\", style=\"event\", data=fmri)\n",
      "    \n",
      "    Use markers instead of the dashes to identify groups:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\",\n",
      "        ...                   hue=\"event\", style=\"event\",\n",
      "        ...                   markers=True, dashes=False, data=fmri)\n",
      "    \n",
      "    Show error bars instead of error bands and plot the standard error:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\", hue=\"event\",\n",
      "        ...                   err_style=\"bars\", ci=68, data=fmri)\n",
      "    \n",
      "    Show experimental replicates instead of aggregating:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"timepoint\", y=\"signal\", hue=\"event\",\n",
      "        ...                   units=\"subject\", estimator=None, lw=1,\n",
      "        ...                   data=fmri.query(\"region == 'frontal'\"))\n",
      "    \n",
      "    Use a quantitative color mapping:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> dots = sns.load_dataset(\"dots\").query(\"align == 'dots'\")\n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   hue=\"coherence\", style=\"choice\",\n",
      "        ...                   data=dots)\n",
      "    \n",
      "    Use a different normalization for the colormap:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> from matplotlib.colors import LogNorm\n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   hue=\"coherence\", style=\"choice\",\n",
      "        ...                   hue_norm=LogNorm(), data=dots)\n",
      "    \n",
      "    Use a different color palette:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   hue=\"coherence\", style=\"choice\",\n",
      "        ...                   palette=\"ch:2.5,.25\", data=dots)\n",
      "    \n",
      "    Use specific color values, treating the hue variable as categorical:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> palette = sns.color_palette(\"mako_r\", 6)\n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   hue=\"coherence\", style=\"choice\",\n",
      "        ...                   palette=palette, data=dots)\n",
      "    \n",
      "    Change the width of the lines with a quantitative variable:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   size=\"coherence\", hue=\"choice\",\n",
      "        ...                   legend=\"full\", data=dots)\n",
      "    \n",
      "    Change the range of line widths used to normalize the size variable:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(x=\"time\", y=\"firing_rate\",\n",
      "        ...                   size=\"coherence\", hue=\"choice\",\n",
      "        ...                   sizes=(.25, 2.5), data=dots)\n",
      "    \n",
      "    Plot from a wide-form DataFrame:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> import numpy as np, pandas as pd; plt.close(\"all\")\n",
      "        >>> index = pd.date_range(\"1 1 2000\", periods=100,\n",
      "        ...                       freq=\"m\", name=\"date\")\n",
      "        >>> data = np.random.randn(100, 4).cumsum(axis=0)\n",
      "        >>> wide_df = pd.DataFrame(data, index, [\"a\", \"b\", \"c\", \"d\"])\n",
      "        >>> ax = sns.lineplot(data=wide_df)\n",
      "    \n",
      "    Plot from a list of Series:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> list_data = [wide_df.loc[:\"2005\", \"a\"], wide_df.loc[\"2003\":, \"b\"]]\n",
      "        >>> ax = sns.lineplot(data=list_data)\n",
      "    \n",
      "    Plot a single Series, pass kwargs to ``plt.plot``:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> ax = sns.lineplot(data=wide_df[\"a\"], color=\"coral\", label=\"line\")\n",
      "    \n",
      "    Draw lines at points as they appear in the dataset:\n",
      "    \n",
      "    .. plot::\n",
      "        :context: close-figs\n",
      "    \n",
      "        >>> x, y = np.random.randn(2, 5000).cumsum(axis=1)\n",
      "        >>> ax = sns.lineplot(x=x, y=y, sort=False, lw=1)\n",
      "\n"
     ]
    }
   ],
   "source": [
    "help(sns.lineplot)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "first_and_last = df[ np.logical_or(df.trial == 0, df.trial==3)]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1b86fe8cc0>"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "plt.figure()\n",
    "sns.lineplot(data=first_and_last, x='session', y='escape time', hue='trial', units='agent', estimator=None)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1b86386a90>"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "plt.figure()\n",
    "sns.lineplot(data=first_and_last, x='session', y='escape time', hue='trial')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "from definitions import ROOT_FOLDER\n",
    "from datetime import datetime\n",
    "results_folder = os.path.join(ROOT_FOLDER, 'results/pearce')\n",
    "if not os.path.exists(results_folder):\n",
    "    os.makedirs(results_folder)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "# save \n",
    "df.to_csv(os.path.join(results_folder,'results_r6_{}.csv'.format(str(datetime.now()))))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}