%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% General parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
i2mPath;
BinTab=[10 30 50 70 90 110 130]%[10 20 30];%[30 20 10 5];
SizeMax=5;
nbpatterns=300;
n_sample=1000;
N=10;
rPJ = LoadRasterPJ('PJ/PJraster1.ras');
NbNeurons=10;
f=find(rPJ(2,:)<=NbNeurons);
rPJ2 = rPJ(:,f);
for BinIndex=1:length(BinTab)
BinSize=BinTab(BinIndex);
% Load the raster data
raster{1,1} = AlainRaster(rPJ2,BinSize,0,max(rPJ2(1,:)));
%raster{2,1} = [];
%raster{3,1} = [];
% Compute the Correlation matrices and the mean from the rasters
datalenRaw = zeros(3,1);
for i=1:size(raster,1)
mAv{i,BinIndex} = zeros(N,1);
CAv{i,BinIndex} = zeros(N,N);
C1Av{i,BinIndex} = zeros(N,N);
for j=1:size(raster,2)
if ~isempty(raster{i,j})
datalenRaw(i,j) = size(raster{i,j},2);
mRaw{i,j} = mean(raster{i,j},2);
CRaw{i,j} = raster{i,j}*transpose(raster{i,j})/datalenRaw(i,j);
C1Raw{i,j} = raster{i,j}(:,1:(datalenRaw(i,j)-1))*transpose(raster{i,j}(:,2:datalenRaw(i,j)))/(datalenRaw(i,j)-1);
mAv{i,BinIndex} = mAv{i,BinIndex} + datalenRaw(i,j)*mRaw{i,j};
CAv{i,BinIndex} = CAv{i,BinIndex} + datalenRaw(i,j)*CRaw{i,j};
C1Av{i,BinIndex} = C1Av{i,BinIndex} + datalenRaw(i,j)*C1Raw{i,j};
end
end
datalen(i) = sum(datalenRaw(i,:));
mAv{i,BinIndex} = mAv{i,BinIndex}/datalen(i);
CAv{i,BinIndex} = CAv{i,BinIndex}/datalen(i);
C1Av{i,BinIndex} = C1Av{i,BinIndex}/datalen(i);
end
MatCorr{BinIndex} = C1Av{i,BinIndex}./CAv{i,BinIndex};
CorrIndex(BinIndex) = mean(mean(C1Av{i,BinIndex}./CAv{i,BinIndex}));
end