% demonstrate the various types of inputs
% default: pulse train
%
% $Revision:$
%
clear
clear all
clear functions
N_upd = 1; % number of update cycles
N_nn = 5; % number of neurons
ts = 1;
T_upd = 1000; % length of each update cycle [ms]
FN='inp_pulsetrain';
sim.FN = FN;
%-----------------------------------------------
path(path,'../neuron');
path(path,'../analysis');
path(path,'../input');
%-----------------------------------------------
%
% definition of input parameters
%
%
% Poisson-distributed spike trains
%
input_params.description='uncorr-irreg+sin';
input_params.type = 12345;
input_params.Mn = 1; % Mn
input_params.Mp = 1; % Mp
input_params.lambdan = 40; % lambda_n
input_params.lambdap = 40; % lambda_p
input_params.corrp = 0.0; % rel. correlation for Mp
input_params.corrn = 0.0; % rel. correlation for Mn
input_params.g0 = 0; % g_0
input_params.sin_width=100; %ms
input_params.sin_width=20; %ms
input_params.sin_ampl = 0;
input_params.sin_freq = 10; %
input_params.sin_dfreq = 1; %
input_params.ss_ampl = -1;
input_params.ss_train = [ ];
input_params.ss_width = 5;
input_params.ss = [100 150 200 300 330 340 500 600 880 950];
input_params.markov_ampl = 0;
input_params.markov_sigma = 0.2;
input_params.markov_tau = 1/20;
%
% biased Gaussian noise
%
input_params.dc_start = 1;
input_params.dc_stop = T_upd;
input_params.dc = 0;
input_params.eta = 0; % sigma^2 of randn noise
input_params.start = 1; % start offset
%-------------------------------------------------------------
rand('seed',99);
randn('seed',1387);
%-------------------------------------------------------------
sim.N_upd = N_upd;
sim.N_nn = N_nn;
sim.T_upd = T_upd;
sim.ts = ts;
all_nn_inputs = gen_nn_inputs(sim, input_params);
figure
plot(-all_nn_inputs,'k','Linewidth',1.5);
ylabel('stimulus [muA/cm^2]','Fontsize',[16]);
xlabel('time [ms]','Fontsize',[16]);
axis([0,T_upd,-1,2]);
%------------------------------------------------------------------
% print the stuff to file
%------------------------------------------------------------------
fn_eps =sprintf('%s.eps', FN);
print('-depsc', fn_eps);
fn_jpg =sprintf('%s.jpg', FN);
print('-djpeg', fn_jpg);
fn_tiff =sprintf('%s.tiff', FN);
print('-dtiff', fn_tiff);
fn_png =sprintf('%s.png', FN);
print('-dpng','-r72', fn_png);
if (1==0),
inp_analysis(-all_nn_inputs, input_params, sim);
%------------------------------------------------------------------
% print the stuff to file
%------------------------------------------------------------------
fn_eps =sprintf('%s.eps', FNA);
print('-depsc', fn_eps);
fn_jpg =sprintf('%s.jpg', FNA);
print('-djpeg', fn_jpg);
fn_tiff =sprintf('%s.tiff', FNA);
print('-dtiff', fn_tiff);
fn_png =sprintf('%s.png', FNA);
print('-dpng','-r72', fn_png);
end;