// $Id: nrutil_tnt.h,v 1.2 2008/07/15 03:52:14 samn Exp $
#ifndef _NR_UTIL_H_
#define _NR_UTIL_H_
#include <string>
#include <cmath>
#include <complex>
#include <iostream>
using namespace std;
typedef double DP;
template<class T>
inline const T SQR(const T a) {return a*a;}
template<class T>
inline const T MAX(const T &a, const T &b)
{return b > a ? (b) : (a);}
inline float MAX(const double &a, const float &b)
{return b > a ? (b) : float(a);}
inline float MAX(const float &a, const double &b)
{return b > a ? float(b) : (a);}
template<class T>
inline const T MIN(const T &a, const T &b)
{return b < a ? (b) : (a);}
inline float MIN(const double &a, const float &b)
{return b < a ? (b) : float(a);}
inline float MIN(const float &a, const double &b)
{return b < a ? float(b) : (a);}
template<class T>
inline const T SIGN(const T &a, const T &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const float &a, const double &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const double &a, const float &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
template<class T>
inline void SWAP(T &a, T &b)
{T dum=a; a=b; b=dum;}
namespace NR {
inline void nrerror(const string error_text)
// Numerical Recipes standard error handler
{
Write2Log("Numerical Recipes run-time error...");
Write2Log("%s",error_text.c_str());
Write2Log("...now exiting to system...");
//exit(1);
}
}
#include "tnt/tnt.h"
#include "tnt/vec.h"
#include "tnt/cmat.h"
// TNT Wrapper File
// This is the file that "joins" the TNT Vector<> and Matrix<> classes
// to the NRVec and NRMat classes by the Wrapper Class Method
// NRVec contains a Vector and a &Vector. All its constructors, except the
// conversion constructor, create the Vector and point the &Vector to it.
// The conversion constructor only points the &Vector. All operations
// (size, subscript) are through the &Vector, which as a reference
// (not pointer) has no indirection overhead.
template<class T>
class NRVec {
private:
TNT::Vector<T> myvec;
TNT::Vector<T> &myref;
public:
NRVec<T>() : myvec(), myref(myvec) {}
explicit NRVec<T>(const int n) : myvec(n), myref(myvec) {}
NRVec<T>(const T &a, int n) : myvec(n,a), myref(myvec) {}
NRVec<T>(const T *a, int n) : myvec(n,a), myref(myvec) {}
NRVec<T>(TNT::Vector<T> &rhs) : myref(rhs) {}
// conversion constructor makes a special NRVec pointing to Vector's data
// this handles Vector actual args sent to NRVec formal args in functions
NRVec(const NRVec<T>& rhs) : myvec(rhs.myref), myref(myvec) {}
// copy constructor calls Vector copy constructor
inline NRVec& operator=(const NRVec& rhs) { myref=rhs.myref; return *this;}
// assignment operator calls Vector assignment operator
inline NRVec& operator=(const T& rhs) { myvec=rhs; return *this;}
// scalar assignment calls Vector assignment operator
inline int size() const {return myref.size();}
inline T & operator[](const int i) const {return myref[i];}
// return element i
inline operator TNT::Vector<T>() const {return myref;}
// conversion operator to Vector
// this handles NRVec function return types when used in Vector expressions
~NRVec() {}
};
template <class T>
class NRMat {
private:
TNT::Matrix<T> mymat;
TNT::Matrix<T> &myref;
public:
NRMat() : mymat(), myref(mymat) {}
NRMat(int n, int m) : mymat(n,m), myref(mymat) {}
NRMat(const T& a, int n, int m) : mymat(n,m,a), myref(mymat) {}
//Initialize to constant
NRMat(const T* a, int n, int m) : mymat(n,m,a), myref(mymat) {}
//Initialize to array
NRMat<T>(TNT::Matrix<T> &rhs) : myref(rhs) {}
// conversion constructor from Matrix
NRMat(const NRMat& rhs) : mymat(rhs.myref), myref(mymat) {}
// copy constructor
inline NRMat& operator=(const NRMat& rhs) { myref=rhs.myref; return *this;}
// assignment operator
inline NRMat& operator=(const T& rhs) { mymat=rhs; return *this;}
// scalar assignment calls Matrix assignment operator
inline T* operator[](const int i) const {return myref[i];}
//subscripting: pointer to row i
//return type is whatever Matrix returns for a single [] dereference
inline int nrows() const {return myref.num_rows();}
inline int ncols() const {return myref.num_cols();}
inline operator TNT::Matrix<T>() const {return myref;}
// conversion operator to Matrix
~NRMat() {}
};
template <class T>
class NRMat3d {
private:
int nn;
int mm;
int kk;
T ***v;
public:
NRMat3d();
NRMat3d(int n, int m, int k);
inline T** operator[](const int i); //subscripting: pointer to row i
inline const T* const * operator[](const int i) const;
inline int dim1() const;
inline int dim2() const;
inline int dim3() const;
~NRMat3d();
};
template <class T>
NRMat3d<T>::NRMat3d(): nn(0), mm(0), kk(0), v(0) {}
template <class T>
NRMat3d<T>::NRMat3d(int n, int m, int k) : nn(n), mm(m), kk(k), v(new T**[n])
{
int i,j;
v[0] = new T*[n*m];
v[0][0] = new T[n*m*k];
for(j=1; j<m; j++)
v[0][j] = v[0][j-1] + k;
for(i=1; i<n; i++) {
v[i] = v[i-1] + m;
v[i][0] = v[i-1][0] + m*k;
for(j=1; j<m; j++)
v[i][j] = v[i][j-1] + k;
}
}
template <class T>
inline T** NRMat3d<T>::operator[](const int i) //subscripting: pointer to row i
{
return v[i];
}
template <class T>
inline const T* const * NRMat3d<T>::operator[](const int i) const
{
return v[i];
}
template <class T>
inline int NRMat3d<T>::dim1() const
{
return nn;
}
template <class T>
inline int NRMat3d<T>::dim2() const
{
return mm;
}
template <class T>
inline int NRMat3d<T>::dim3() const
{
return kk;
}
template <class T>
NRMat3d<T>::~NRMat3d()
{
if (v != 0) {
delete[] (v[0][0]);
delete[] (v[0]);
delete[] (v);
}
}
//The next 3 classes are used in artihmetic coding, Huffman coding, and
//wavelet transforms respectively. This is as good a place as any to put them!
class arithcode {
private:
NRVec<unsigned long> *ilob_p,*iupb_p,*ncumfq_p;
public:
NRVec<unsigned long> &ilob,&iupb,&ncumfq;
unsigned long jdif,nc,minint,nch,ncum,nrad;
arithcode(unsigned long n1, unsigned long n2, unsigned long n3)
: ilob_p(new NRVec<unsigned long>(n1)),
iupb_p(new NRVec<unsigned long>(n2)),
ncumfq_p(new NRVec<unsigned long>(n3)),
ilob(*ilob_p),iupb(*iupb_p),ncumfq(*ncumfq_p) {}
~arithcode() {
if (ilob_p != 0) delete ilob_p;
if (iupb_p != 0) delete iupb_p;
if (ncumfq_p != 0) delete ncumfq_p;
}
};
class huffcode {
private:
NRVec<unsigned long> *icod_p,*ncod_p,*left_p,*right_p;
public:
NRVec<unsigned long> &icod,&ncod,&left,&right;
int nch,nodemax;
huffcode(unsigned long n1, unsigned long n2, unsigned long n3,
unsigned long n4) :
icod_p(new NRVec<unsigned long>(n1)),
ncod_p(new NRVec<unsigned long>(n2)),
left_p(new NRVec<unsigned long>(n3)),
right_p(new NRVec<unsigned long>(n4)),
icod(*icod_p),ncod(*ncod_p),left(*left_p),right(*right_p) {}
~huffcode() {
if (icod_p != 0) delete icod_p;
if (ncod_p != 0) delete ncod_p;
if (left_p != 0) delete left_p;
if (right_p != 0) delete right_p;
}
};
class wavefilt {
private:
NRVec<DP> *cc_p,*cr_p;
public:
int ncof,ioff,joff;
NRVec<DP> &cc,&cr;
wavefilt() : cc(*cc_p),cr(*cr_p) {}
wavefilt(const DP *a, const int n) : //initialize to array
cc_p(new NRVec<DP>(n)),cr_p(new NRVec<DP>(n)),
ncof(n),ioff(-(n >> 1)),joff(-(n >> 1)),cc(*cc_p),cr(*cr_p) {
int i;
for (i=0; i<n; i++)
cc[i] = *a++;
DP sig = -1.0;
for (i=0; i<n; i++) {
cr[n-1-i]=sig*cc[i];
sig = -sig;
}
}
~wavefilt() {
if (cc_p != 0) delete cc_p;
if (cr_p != 0) delete cr_p;
}
};
//Overloaded complex operations to handle mixed float and double
//This takes care of e.g. 1.0/z, z complex<float>
inline const complex<float> operator+(const double &a,
const complex<float> &b) { return float(a)+b; }
inline const complex<float> operator+(const complex<float> &a,
const double &b) { return a+float(b); }
inline const complex<float> operator-(const double &a,
const complex<float> &b) { return float(a)-b; }
inline const complex<float> operator-(const complex<float> &a,
const double &b) { return a-float(b); }
inline const complex<float> operator*(const double &a,
const complex<float> &b) { return float(a)*b; }
inline const complex<float> operator*(const complex<float> &a,
const double &b) { return a*float(b); }
inline const complex<float> operator/(const double &a,
const complex<float> &b) { return float(a)/b; }
inline const complex<float> operator/(const complex<float> &a,
const double &b) { return a/float(b); }
//some compilers choke on pow(float,double) in single precision. also atan2
inline float pow (float x, double y) {return pow(double(x),y);}
inline float pow (double x, float y) {return pow(x,double(y));}
inline float atan2 (float x, double y) {return atan2(double(x),y);}
inline float atan2 (double x, float y) {return atan2(x,double(y));}
#endif /* _NR_UTIL_H_ */