// $Id: WCMath.h,v 1.1 2011/01/31 16:06:52 samn Exp $
#pragma once
#include <cmath>
#include <vector>
#include "A2D.h"
using namespace std;
inline long Factorial(long n)
{
if(n <= 1) return 1;
return n * Factorial(n - 1);
}
inline long DFactorial(long n)
{
if(n<=1) return 1;
return n * DFactorial(n-2);
}
//NR version of logarithm of gamma function
inline float lngamma(float xx)
{
double x,y,tmp,ser;
static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};
int j;
y=x=xx;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;
for (j=0;j<=5;j++) ser += cof[j]/++y;
return -tmp+log(2.5066282746310005*ser/x);
}
inline double Gamma(double R)
{
int iR = (int) R;
double d = iR;
if(d == R)
{
return Factorial(iR-1);
}
else
{
const double PI=3.14159265358979323846;
//R = n/2 + 1;
//n = (R - 1)*2;
int n = static_cast<int>(( R - 1.0 ) * 2.0);
return (sqrt(PI) * DFactorial(n)) / pow(2,(n+1)/2);
}
}
//monotonically decreasing
template< class T >
inline bool MonoDec(std::vector<T>& v)
{
int isz = v.size(), i, j;
for(i=0;i<isz-1;i++)
{
for(j=i+1;j<isz;j++)
{
if(v[i]<v[j])
return false;
}
}
return true;
}
template< class T >
T Sum(std::vector<T>& v)
{
int i;
T val = T(0);
for(i=0;i<v.size();i++) val += v[i];
return val;
}
template< class T >
T Sum(std::vector<T>& v,int iStart,int iEnd)
{
int i;
T val = T(0);
for(i=iStart;i<v.size() && i<iEnd;i++) val += v[i];
return val;
}
template< class T >
T Avg(std::vector<T>& v)
{
if(!v.size()) return T(0);
int i;
T val = T(0);
for(i=0;i<v.size();i++) val += v[i];
return val / (T) v.size();
}
template< class T >
T Avg(std::vector<T>& v,int iStart,int iEnd)
{
if(!v.size()) return T(0);
int i;
T val = T(0);
for(i=iStart;i<iEnd;i++) val += v[i];
return val / (T) (iEnd-iStart);
}
template< class T >
T Variance(std::vector<T>& v,int iStart,int iEnd)
{ T avg = Avg(v,iStart,iEnd);
int i;
T var = T(0) , val = T(0);
for(i=iStart;i<iEnd;i++)
{ val = v[i]-avg;
var += val*val;
}
var /= (T)(iEnd-iStart);
return var;
}
//returns sum(1..N)
inline int IntegerSum(int N)
{
return (N*N+N)/2;
}
using namespace std;
//#define SAMPLE_MEAN
// Variance-covariance matrix: creation
template<class REAL>
void CovarMat(const vector< vector<REAL> >& vDataIn,int iRows,int iCols,vector< vector<REAL> >& vCovarMat, vector<REAL>& vMean,bool bCorrelMat = false)
{ // Create iCols * iCols covariance matrix from given iRow * iCol data matrix.
int i, j, x2, x, y, j1 , j2;
// Allocate storage for mean vector
vMean = vector<REAL>(iCols,0.0);
vector< vector<REAL> > vData(vDataIn); // copy it!
#ifdef SAMPLE_MEAN
REAL N = iRows - 1;
#else
REAL N = iRows;
#endif
// Determine mean of row vectors of input data matrix
for(x=0;x<iCols;x++)
{ for(y=0;y<iRows;y++)
vMean[x] += vData[y][x];
vMean[x] /= N;
}
vector<REAL> vStdev(iCols);
// Center the row vectors.
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{ vData[y][x] -= vMean[x];
}
}
// compute std-dev
//const bool bCorrelMat = false;
if(bCorrelMat) for(x=0;x<iCols;x++)
{ for(y=0;y<iRows;y++)
vStdev[x]+=vData[y][x]*vData[y][x];
vStdev[x] /= N;
vStdev[x] = sqrt(vStdev[x]);
}
vCovarMat = vector<vector<REAL> >(iCols,vector<REAL>(iCols,0.0));
// Calculate the iCols * iCols covariance matrix.
for(j1=0;j1<iCols;j1++)
{ for(j2=0;j2<=j1;j2++)
{ vCovarMat[j1][j2]=0.0;
for(i=0;i<iRows;i++)
vCovarMat[j1][j2] += ( vData[i][j1] * vData[i][j2] );
if(bCorrelMat) //correlation matrix
vCovarMat[j1][j2] /= (N * vStdev[j1] * vStdev[j2] );
else //covariance matrix
vCovarMat[j1][j2] /= N;
vCovarMat[j2][j1]=vCovarMat[j1][j2];
}
}
}
// Variance-covariance matrix: creation
template<class REALD , class REALC, class REALM>
void CovarMat( A2D<REALD>& vData , int iRows, int iCols, A2D<REALC>& vCovarMat, vector<REALM>& vMean,bool bCorrelMat = false)
{ // Create iCols * iCols covariance matrix from given iRow * iCol data matrix.
int i, x, y, j1 , j2;
// Allocate storage for mean vector
vMean = vector<REALM>(iCols);
#ifdef SAMPLE_MEAN
REALM N = iRows - 1;
#else
REALM N = iRows;
#endif
// Determine mean of row vectors of input data matrix
for(x=0;x<iCols;x++)
{ vMean[x] = 0.0;
for(y=0;y<iRows;y++)
{ vMean[x] += vData[y][x];
}
vMean[x] /= N;
}
vector<REALM> vStdev(iCols);
// Center the row vectors.
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{ vData[y][x] -= vMean[x];
}
}
// compute std-dev
//const bool bCorrelMat = false;
if(bCorrelMat) for(x=0;x<iCols;x++)
{ for(y=0;y<iRows;y++)
vStdev[x]+=vData[y][x]*vData[y][x];
vStdev[x] /= N;
vStdev[x] = sqrt(vStdev[x]);
}
vCovarMat.Init(iCols,iCols);
if(bCorrelMat) // Calculate the iCols * iCols correlation matrix.
{ for(j1=0;j1<iCols;j1++)
{ for(j2=0;j2<=j1;j2++)
{ vCovarMat[j1][j2]=0.0;
for(i=0;i<iRows;i++)
{ vCovarMat[j1][j2] += (vData[i][j1] * vData[i][j2]);
}
vCovarMat[j1][j2] /= ((REALC) N * vStdev[j1] * vStdev[j2] );
vCovarMat[j2][j1]=vCovarMat[j1][j2];
}
}
}
else // Calculate the iCols * iCols covariance matrix.
{ for(j1=0;j1<iCols;j1++)
{ for(j2=0;j2<=j1;j2++)
{ vCovarMat[j1][j2]=0.0;
for(i=0;i<iRows;i++)
{ vCovarMat[j1][j2] += (vData[i][j1] * vData[i][j2]);
}
vCovarMat[j1][j2] /= N;
vCovarMat[j2][j1]=vCovarMat[j1][j2];
}
}
}
// Un-Center the row vectors.
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{ vData[y][x] += vMean[x];
}
}
}
// Variance-covariance matrix: creation
template<class REAL>
void CovarMat(const vector< REAL >& vDataIn,int iRows,int iCols,vector< vector<REAL> >& vCovarMat, vector<REAL>& vMean,bool bCorrelMat = false)
{ // Create iCols * iCols covariance matrix from given iRow * iCol data matrix.
int i, j, x2, x, y, j1 , j2;
// Allocate storage for mean vector
vMean = vector<REAL>(iCols);
vector< REAL > vData(vDataIn); // copy it!
#ifdef SAMPLE_MEAN
REAL N = iRows - 1;
#else
REAL N = iRows;
#endif
// Determine mean of row vectors of input data matrix
for(x=0;x<iCols;x++)
{ vMean[x] = 0.0;
for(y=0;y<iRows;y++)
{ vMean[x] += vData[y*iCols+x];
}
vMean[x] /= N;
}
vector<REAL> vStdev(iCols);
// Center the row vectors.
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{ vData[y*iCols+x] -= vMean[x];
}
}
// compute std-dev
//const bool bCorrelMat = false;
if(bCorrelMat) for(x=0;x<iCols;x++)
{ for(y=0;y<iRows;y++)
vStdev[x]+=vData[y*iCols+x]*vData[y*iCols+x];
vStdev[x] /= N;
vStdev[x] = sqrt(vStdev[x]);
}
vCovarMat = vector<vector<REAL> >(iCols,vector<REAL>(iCols,0.0));
// Calculate the iCols * iCols covariance matrix.
for(j1=0;j1<iCols;j1++)
{ for(j2=0;j2<=j1;j2++)
{ vCovarMat[j1][j2]=0.0;
for(i=0;i<iRows;i++)
{ vCovarMat[j1][j2] += (vData[i*iCols+j1] * vData[i*iCols+j2]);
}
if(bCorrelMat) //correlation matrix
vCovarMat[j1][j2] /= ( N * vStdev[j1] * vStdev[j2] );
else //covariance matrix
vCovarMat[j1][j2] /= N;
vCovarMat[j2][j1]=vCovarMat[j1][j2];
}
}
}
template< class T >
int GetMaxIndex(vector<T>& v)
{
int iSz = v.size(), i = 0, iMaxIDX = 0;
if(iSz<1) return -1;
T maxVal = v[0];
for(i=1;i<iSz;i++)
{
if(v[i]>maxVal)
{
maxVal=v[i];
iMaxIDX=i;
}
}
return iMaxIDX;
}
template< class T >
int GetMinIndex(vector<T>& v)
{
int iSz = v.size(), i = 0, iMinIDX = 0;
if(iSz<1) return -1;
T minVal = v[0];
for(i=1;i<iSz;i++)
{
if(v[i]<minVal)
{
minVal=v[i];
iMinIDX=i;
}
}
return iMinIDX;
}
template< class T >
T Energy(vector<T>& v)
{
int iSz = v.size() , i = 0;
T sum(0);
if(iSz<1) return sum;
for(;i<iSz;i++) sum += v[i]*v[i];
sum = sqrt(sum);
return sum / (double) iSz;
}
//chi-squared cumulative distribution function
//returns probability of chi-squared with df degrees of freedom has value <= x
double chisqCDF(double x, double df);
inline bool PowOf2(int N)
{
if(N < 0) return false;
while(N>1)
{
if(N%2==1) return false;
N /= 2;
}
return true;
}
inline int CeilPowOf2(int N)
{
int T = 1;
while(T < N) T *= 2;
return T;
}