: Chapman JB, Johnson EA, Kootsey JM. (1983)
: Electrical and Biochemical Properties of an Enzyme Model of the Sodium Pump
: J. Membrane Biol. 74, 139-153
: note default step 5 voltage dependence
: extended by Michael Hines as a component of larger models.
: I.e. modifies nai, ki, contributes to ina, ik, and consumes atp
: for investigation of isolated pump, allow clamping of
: nai, ki, atp (note p and adp are constant here)
: initialize to steady state pump with nai, ki, atp clamped.
NEURON {
SUFFIX nakpump
USEION na READ ina WRITE nai, nao, ina
USEION k READ ik WRITE ki, ko, ik
RANGE inapump, ikpump
RANGE atpact
RANGE nain, naout, kin, kout, atp, p, adp
: following for fig 9 and 12
RANGE rf, rb
}
UNITS {
(l) = (liter)
(mol) = (1)
(mmol) = (millimol)
(mM) = (mmol/l)
(uA) = (microamp)
(mA) = (milliamp)
(mV) = (millivolt)
(um) = (micron)
F = (faraday) (kilocoulombs)
R = (k-mole) (joule/degC)
PI = (pi) (1)
}
PARAMETER {
nasrcrate = 0 (/ms)
ksrcrate = 0 (/ms)
atpsrcrate = 1e9 (/ms)
totalpump = 1.25e-13 (mol/cm2)
nain = 9.6 (mmol/l)
naout = 140 (mmol/l)
kin = 150.4 (mmol/l)
kout = 5.4 (mmol/l)
atp = 4.99 (mmol/l)
p = 4.95 (mmol/l)
adp = 0.06 (mmol/l)
T = 310 (K)
f1 = 2.5e11 (l3/mol3-s)
b1 = 1e5 (/s)
f2 = 1e4 (/s)
b2 = 1e5 (l/mol-s)
f3 = 172 (/s)
b3 = 1.72e4 (l3/mol3-s)
f4 = 1.5e7 (l2/mol2-s)
b4 = 2e5 (l/mol-s)
f5 = 2e6 (l/mol-s)
b5 = 30 (/s)
f6 = 1.15e4 (/s)
b6 = 6e8 (l2/mol2-s)
beta = .5
a3 = 0 (1)
a5 = 1 (1)
iter=1
}
ASSIGNED {
diam (um)
v (mV)
ina (mA/cm2)
ik (mA/cm2)
inapump (mA/cm2)
ikpump (mA/cm2)
inapumplast (mA/cm2)
ikpumplast (mA/cm2)
atpact (uA/cm2)
rf[7] (uA/cm2) rb[7] (uA/cm2)
}
STATE {
eatp (mol/cm2)
na3eatp (mol/cm2)
na3ep (mol/cm2)
ep (mol/cm2)
k2e (mol/cm2)
k2eatp (mol/cm2)
nai (mM)
ki (mM)
nao (mM)
ko (mM)
atps (mmol/l)
}
LOCAL volin, volout, surf
INITIAL {
LOCAL a1, a2, a3, a4, a5
volin = PI*diam*diam/4 : cross section area
volout = 1 (um2)
surf = PI*diam*(1e7) : circumference
nai = nain
ki = kin
nao = naout
ko = kout
atps = atp
: clamp to nain, kin, atp
a1 = nasrcrate a2 = ksrcrate a3 = atpsrcrate
nasrcrate=1e9 ksrcrate=1e9 atpsrcrate=1e9
ina = 0
ik = 0
inapump = 0
ikpump = 0
inapumplast = 0
ikpumplast = 0
FROM i = 1 TO iter {
SOLVE scheme STEADYSTATE sparse
}
: unclamp
nasrcrate=a1 ksrcrate=a2 atpsrcrate=a3
}
BREAKPOINT {
SOLVE scheme METHOD sparse
inapumplast = inapump
ikpumplast = ikpump
inapump = 3*atpact*(1e-3)
ikpump = -2*atpact*(1e-3)
ina = inapump
ik = ikpump
}
KINETIC scheme {
LOCAL vdi, vdo, a3i, a3o, a5i, a5o, x, i
x = F/surf*(1e9) i = 1
a3i = exp(a3*(1 - beta)*F*v/R/T)
a3o = exp(-a3*beta*F*v/R/T)
a5i = exp(a5*(1 - beta)*F*v/R/T)
a5o = exp(-a5*beta*F*v/R/T)
COMPARTMENT volin { nai ki atps adp p }
COMPARTMENT volout { nao ko }
COMPARTMENT surf*(1e3) { eatp na3eatp na3ep ep k2e k2eatp }
~ eatp + 3 nai <-> na3eatp (f1*surf*(1e-9), b1*surf*(1e0))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
~ na3eatp <-> na3ep + adp (f2*surf*(1e0), b2*surf*(1e-3))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
~ na3ep <-> ep + 3 naout (a3i*f3*surf*(1e0), a3o*b3*surf*(1e-9))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
~ ep + 2 kout <-> k2e + p (f4*surf*(1e-6), b4*surf*(1e-3))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
~ k2e + atps <-> k2eatp (a5i*f5*surf*(1e-3), a5o*b5*surf*(1e0))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
~ k2eatp <-> eatp + 2 ki (f6*surf*(1e0), b6*surf*(1e-6))
rf[i] = f_flux*x rb[i] = b_flux*x i = i+1
atpact = (f_flux - b_flux)*x
CONSERVE eatp+na3eatp+na3ep+ep+k2e+k2eatp = totalpump*surf*(1e3)
: sources
COMPARTMENT volin { nain kin atp }
~ nain <-> nai (nasrcrate*volin, nasrcrate*volin)
~ kin <-> ki (ksrcrate*volin, ksrcrate*volin)
~ atp <-> atps (atpsrcrate*volin, atpsrcrate*volin)
~ nai << (-(ina - inapumplast)/x*(1e3))
~ ki << (-(ik - ikpumplast)/x*(1e3))
COMPARTMENT volout { naout kout }
~ naout <-> nao (1e9(/ms)*volout, 1e9(/ms)*volout)
~ kout <-> ko (1e9(/ms)*volout, 1e9(/ms)*volout)
}