import matplotlib
matplotlib.use('Agg')
import numpy
from pylab import *
import mytools
import pickle
import time
import sys
import random
from setparams import *
from os.path import exists
v0 = -80
ca0 = 0.0001
#proximalpoints = [100,100,100,200,200,200,300,300,300,400,400,400]
#distalpoints = [600,750,900,600,750,900,600,750,900,600,750,900]
proximalpoints = [200] #,200]
distalpoints = [600] #,900]
BACdt = 5.0
fs = 5
tstop = 5000.0
#epspdts = [0.25*x for x in range(-80,81)]
#epspdts = [0.5*x for x in range(-40,41)]
#epspdts = [2.0*x for x in range(-10,-5)]+range(-10,11)+[2.0*x for x in range(6,11)]
#epspdts = [10.0*x for x in range(-10,-8)]+[4.0*x for x in range(-20,-10)]+[2.0*x for x in range(-20,-10)]+[2.0*x for x in range(-10,11)]+[2.0*x for x in range(11,21)]+[4.0*x for x in range(11,21)]+[10.0*x for x in range(9,11)]
#epspdts_savetimecourses = [-100,-80,-60,-40,-30,-20,-10,0,10,20,30,40,60,80,100]
epspdts = [10.0*x for x in range(-10,-8)]+[4.0*x for x in range(-20,-10)]+[4.0*x for x in range(-10,-5)]+[4.0*x for x in range(-5,6)]+[4.0*x for x in range(6,11)]+[4.0*x for x in range(11,21)]+[10.0*x for x in range(9,11)]
istart = [int(100+x) for x in epspdts]
iend = [int(120+x) for x in epspdts]
#epspdts_savetimecourses = [-40,-20,-12,-4,0,4,12,20,40]
epspdts_savetimecourses = [-100,-80,-60,-32,0,32,60,80,100]
Is_st2 = 1.32
st2coeff = 0.80 #Somatic 5ms pulse
st2coeff_down = 1.35 #Somatic 5ms pulse
st1coeff = 0.9 #Proximal apical 200ms pulse
unpicklefile = open('apicalthresholds.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
IsAllAll_st1 = unpickledlist[0]
dists = unpickledlist[1]
unpicklefile = open('apicalthresholds_epsp.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
IsAllAll_syn1 = unpickledlist[0]
import mutation_stuff
MT = mutation_stuff.getMT()
defVals = mutation_stuff.getdefvals()
keyList = defVals.keys()
for idefval in range(0,len(keyList)):
if type(defVals[keyList[idefval]]) is not list:
defVals[keyList[idefval]] = [defVals[keyList[idefval]], defVals[keyList[idefval]]] #make the dictionary values [somatic, apical]
updatedVars = ['somatic','apical','basal'] # the possible classes of segments that defVals may apply to
whichDefVal = [0,1,0] # use the defVal[0] for somatic and basal segments and defVal[1] for apical segments
unpicklefile = open('scalings_cs.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
theseCoeffsAllAll = unpickledlist[0]
theseMutValsAllAll = unpickledlist[2]
paramdicts = []
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 1.0, 'S_gCa_HVAbar_Ca_HVA': 1.0}) # 1 spike per burst, control
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 1.6}) # 1-2 spikes per burst
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 2.2}) # 2-3 spikes per burst
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 2.2, 'S_gCa_HVAbar_Ca_HVA': 0.9}) # 3-4 spikes per burst
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 2.2, 'S_gCa_HVAbar_Ca_HVA': 0.625}) # 3-5 spikes per burst
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 2.2, 'S_gCa_HVAbar_Ca_HVA': 0.5}) # 4-6 spikes per burst
paramdicts.append({'A_gNaTa_tbar_NaTa_t': 2.2, 'S_gCa_HVAbar_Ca_HVA': 0.3}) # 5-9 spikes per burst
VsomaupAllAll = []
VsomadownAllAll = []
VdendupAllAll = []
VdenddownAllAll = []
rateCoeffs = [[1.1],[0.7]]
counter = -1
icell = 0
idist = 0
ext2a = '_syn1coeff0.25'
ext2b = '_syn1coeff0.5'
if not exists('updownresponsemean20ms_noisy_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2a+'_controls.sav'):
Casoma_control = []
SKsoma_control = []
Vdend_control = []
Vdend2_control = []
Vdend3_control = []
Cadend3_control = []
SKdend3_control = []
spikes_control = []
Vdend3b_control = []
Cadend3b_control = []
SKdend3b_control = []
Vdend3b2_control = []
Cadend3b2_control = []
SKdend3b2_control = []
for iup in range(0,2):
if iup==0:
ext = 'up2'
ext2 = ext2a
else:
ext = 'down'
ext2 = ext2b
Casoma_control_thisUp = []
SKsoma_control_thisUp = []
Vdend_control_thisUp = []
Vdend2_control_thisUp = []
Vdend3_control_thisUp = []
Cadend3_control_thisUp = []
SKdend3_control_thisUp = []
spikes_control_thisUp = []
Vdend3b_control_thisUp = []
Cadend3b_control_thisUp = []
SKdend3b_control_thisUp = []
Vdend3b2_control_thisUp = []
Cadend3b2_control_thisUp = []
SKdend3b2_control_thisUp = []
for icoeff in range(0,len(rateCoeffs[iup])):
Casoma_control_thisCoeff = []
SKsoma_control_thisCoeff = []
Vdend_control_thisCoeff = []
Vdend2_control_thisCoeff = []
Vdend3_control_thisCoeff = []
Cadend3_control_thisCoeff = []
SKdend3_control_thisCoeff = []
spikes_control_thisCoeff = []
Vdend3b_control_thisCoeff = []
Cadend3b_control_thisCoeff = []
SKdend3b_control_thisCoeff = []
for rdSeed in range(1,126):
if rdSeed%20 == 0:
print str(100*rdSeed*0.05)+" % done of "+ext
if not exists('updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_0_0_0_-1_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav'):
print 'updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_0_0_0_-1_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav not found'
continue
unpicklefile = open('updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_0_0_0_-1_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
spikes_control_thisCoeff.append(unpickledlist[8])
Vdend3b_control_thisCoeff.append(unpickledlist[9])
Cadend3b_control_thisCoeff.append(unpickledlist[10])
SKdend3b_control_thisCoeff.append(unpickledlist[11])
spikes_control_thisUp.append([[spikes_control_thisCoeff[i][idt] for i in range(0,len(spikes_control_thisCoeff))] for idt in range(0,len(epspdts))])
Vdend3b_control_thisUp = [[mean(Vdend3b_control_thisCoeff[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(Vdend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
Cadend3b_control_thisUp = [[mean(Cadend3b_control_thisCoeff[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(Cadend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
SKdend3b_control_thisUp = [[mean(SKdend3b_control_thisCoeff[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(SKdend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
Vdend3b2_control_thisUp = [[mean(Vdend3b_control_thisCoeff[i][idt][100:120]) for i in range(0,len(Vdend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
Cadend3b2_control_thisUp = [[mean(Cadend3b_control_thisCoeff[i][idt][100:120]) for i in range(0,len(Cadend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
SKdend3b2_control_thisUp = [[mean(SKdend3b_control_thisCoeff[i][idt][100:120]) for i in range(0,len(SKdend3b_control_thisCoeff))] for idt in range(0,len(epspdts))]
spikes_control.append(spikes_control_thisUp[:])
Vdend3b_control.append(Vdend3b_control_thisUp[:])
Cadend3b_control.append(Cadend3b_control_thisUp[:])
SKdend3b_control.append(SKdend3b_control_thisUp[:])
Vdend3b2_control.append(Vdend3b2_control_thisUp[:])
Cadend3b2_control.append(Cadend3b2_control_thisUp[:])
SKdend3b2_control.append(SKdend3b2_control_thisUp[:])
picklelist = [spikes_control[:], Vdend3b_control[:], Cadend3b_control[:], SKdend3b_control[:], Vdend3b2_control[:], Cadend3b2_control[:], SKdend3b2_control[:]]
file = open('updownresponsemean20ms_noisy_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2a+'_controls.sav','w')
pickle.dump(picklelist,file)
file.close()
else:
unpicklefile = open('updownresponsemean20ms_noisy_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2a+'_controls.sav','r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
spikes_control = unpickledlist[0]
Vdend3b_control = unpickledlist[1]
Cadend3b_control = unpickledlist[2]
SKdend3b_control = unpickledlist[3]
Vdend3b2_control = unpickledlist[4]
Cadend3b2_control = unpickledlist[5]
SKdend3b2_control = unpickledlist[6]
if True:
theseCoeffsAll = theseCoeffsAllAll[icell]
spikesAll = []
for idist in range(0,1):#len(proximalpoints)):
counter = counter + 1
proximalpoint = proximalpoints[idist]
distalpoint = distalpoints[idist]
fixedpoint = 700
idist_proximal = dists.index(proximalpoint)
idist_distal = dists.index(distalpoint)
paramdict = paramdicts[icell]
styles = ['b-','b-']
##cols = ['#00aaaa','#11cc44','#55ee00','#bbaa00','#ee6600','#ff0000', '#aa00aa','#772277','#333333']
#cols = ['#444444','#012345','#aa00aa','#bbaa00','#ee6600','#ff0000', '#009999','#772277','#00cc00']
cols = ['#666666','#012345','#aa00aa','#bbaa00','#ee6600','#ff0000', '#00aaaa','#772277','#00cc00']
col_control = '#2222ff'
coeffCoeffs = [[0.25,0],[0.125,0],[0.5,0],[0.5,1.0/3],[0.5,2.0/3],[0.5,1.0],[-0.25,0],[-0.125,0],[-0.5,0]]
lw = 0.5
mutcounter = -1
for igene in range(0,len(MT)):
for imut in range(0,len(MT[igene])):
nVals = len(MT[igene][imut])*[0]
thesemutvars = []
theseCoeffs = theseCoeffsAll[igene][imut]
for imutvar in range(0,len(MT[igene][imut])):
thesemutvars.append(MT[igene][imut][imutvar][0])
if type(MT[igene][imut][imutvar][1]) is int or type(MT[igene][imut][imutvar][1]) is float:
MT[igene][imut][imutvar][1] = [MT[igene][imut][imutvar][1]]
nVals[imutvar] = len(MT[igene][imut][imutvar][1])
cumprodnVals = cumprod(nVals)
allmutvars = cumprodnVals[len(MT[igene][imut])-1]*[thesemutvars]
allmutvals = []
for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]):
allmutvals.append([0]*len(thesemutvars))
for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]):
for imutvar in range(0,len(MT[igene][imut])):
if imutvar==0:
allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][iallmutval%nVals[imutvar]]
else:
allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][(iallmutval/cumprodnVals[imutvar-1])%nVals[imutvar]]
for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]):
mutcounter = mutcounter + 1
if len(sys.argv) > 1 and int(float(sys.argv[1])) != mutcounter: # and (igene!=0 or imut!=0 or iallmutval!=0): #If 0-0-0, go a bit further anyway to load the control data
continue
spikesThisMutVal = []
for icoeff in range(0,len(rateCoeffs[0])):
for iup in range(0,2):
if iup==0:
ext = 'up2'
ext2 = ext2a
else:
ext = 'down'
ext2 = ext2b
close("all")
#f_tc,axarr_tc = subplots(2*len(epspdts_savetimecourses),4)
#if False:
f,axarr = subplots(len(epspdts_savetimecourses),4)
for iter in [0,2,6,8]:
if not exists('updownresponsemean20ms_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'.sav'):
Casoma = []
SKsoma = []
Vdend = []
Vdend2 = []
Vdend3 = []
Cadend3 = []
SKdend3 = []
spikes = []
Vdend3b = []
Cadend3b = []
SKdend3b = []
for rdSeed in range(1,126):
if rdSeed%20 == 0:
print str(100*rdSeed*0.05)+" % done of "+ext+", iter="+str(iter)
if not exists('updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav'):
print 'updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav not found'
continue
unpicklefile = open('updownresponse_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'_seed'+str(rdSeed)+'_tmp.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
#picklelist = [theseCoeffsAllAll,CasomaupThisMutVal,SKsomaupThisMutVal,VdendupThisMutVal,Vdend2upThisMutVal,Vdend3upThisMutVal,Cadend3upThisMutVal,SKdend3upThisMutVal,
# spikesupThisMutVal,epspdts,MT]
spikes.append(unpickledlist[8])
Vdend3b.append(unpickledlist[9])
Cadend3b.append(unpickledlist[10])
SKdend3b.append(unpickledlist[11])
#i goes from 0 to 20 (rdSeed), idt goes from 0 to 44
spikes_thisUp = [[spikes[i][idt] for i in range(0,len(spikes))] for idt in range(0,len(epspdts))]
Vdend3b_thisUp = [[mean(Vdend3b[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(Vdend3b))] for idt in range(0,len(epspdts))]
Cadend3b_thisUp = [[mean(Cadend3b[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(Cadend3b))] for idt in range(0,len(epspdts))]
SKdend3b_thisUp = [[mean(SKdend3b[i][idt][istart[idt]:iend[idt]]) for i in range(0,len(SKdend3b))] for idt in range(0,len(epspdts))]
Vdend3b2_thisUp = [[mean(Vdend3b[i][idt][100:120]) for i in range(0,len(Vdend3b))] for idt in range(0,len(epspdts))]
Cadend3b2_thisUp = [[mean(Cadend3b[i][idt][100:120]) for i in range(0,len(Cadend3b))] for idt in range(0,len(epspdts))]
SKdend3b2_thisUp = [[mean(SKdend3b[i][idt][100:120]) for i in range(0,len(SKdend3b))] for idt in range(0,len(epspdts))]
picklelist = [spikes_thisUp[:], Vdend3b_thisUp[:], Cadend3b_thisUp[:], SKdend3b_thisUp[:], Vdend3b2_thisUp[:], Cadend3b2_thisUp[:], SKdend3b2_thisUp[:]]
file = open('updownresponsemean20ms_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'.sav','w')
pickle.dump(picklelist,file)
file.close()
else:
unpicklefile = open('updownresponsemean20ms_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(iter)+'_'+str(rateCoeffs[iup][icoeff])+'.sav','r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
spikes_thisUp = unpickledlist[0]
Vdend3b_thisUp = unpickledlist[1]
Cadend3b_thisUp = unpickledlist[2]
SKdend3b_thisUp = unpickledlist[3]
Vdend3b2_thisUp = unpickledlist[4]
Cadend3b2_thisUp = unpickledlist[5]
SKdend3b2_thisUp = unpickledlist[6]
# for idt in range(0,len(epspdts)):
# spikeshist = [sum([sum([1 for x in spikes[isamp][idt] if x >= 2900+5*j and x < 2900+5*(j+1)]) for isamp in range(0,len(spikes))]) for j in range(0,60)]
# #spikeshist = [sum([sum([1 for x in spikes[isamp][idt] if x >= 2800+5*j and x < 2800+5*(j+1)]) for isamp in range(0,len(spikes))]) for j in range(0,60)]
# Vdend3hist = [mean([Vdend3b[i][idt][j] for i in range(0,len(spikes))]) for j in range(0,301)]
# Cadend3hist = [mean([Cadend3b[i][idt][j] for i in range(0,len(spikes))]) for j in range(0,301)]
# SKdend3hist = [mean([SKdend3b[i][idt][j] for i in range(0,len(spikes))]) for j in range(0,301)]
#
# axarr[idt,0].plot([2900+5*j for j in range(0,60)], spikeshist, styles[iup], color=cols[iter])
# axarr[idt,1].plot([2900+j for j in range(0,301)], Vdend3hist, styles[iup], color=cols[iter])
# axarr[idt,2].plot([2900+j for j in range(0,301)], Cadend3hist, styles[iup], color=cols[iter])
# axarr[idt,3].plot([2900+j for j in range(0,301)], SKdend3hist, styles[iup], color=cols[iter])
#
# if iter==8:
# spikeshist = [sum([sum([1 for x in spikes_control[iup][icoeff][isamp][idt] if x >= 2900+5*j and x < 2900+5*(j+1)]) for isamp in range(0,len(spikes_control[iup][icoeff]))]) for j in range(0,60)]
# #spikeshist = [sum([sum([1 for x in spikes_control[iup][icoeff][isamp][idt] if x >= 2800+5*j and x < 2800+5*(j+1)]) for isamp in range(0,len(spikes_control[iup][icoeff]))]) for j in range(0,60)]
# Vdend3hist = [mean([Vdend3b_control[iup][icoeff][i][idt][j] for i in range(0,len(spikes_control[iup][icoeff]))]) for j in range(0,301)]
# Cadend3hist = [mean([Cadend3b_control[iup][icoeff][i][idt][j] for i in range(0,len(spikes_control[iup][icoeff]))]) for j in range(0,301)]
# SKdend3hist = [mean([SKdend3b_control[iup][icoeff][i][idt][j] for i in range(0,len(spikes_control[iup][icoeff]))]) for j in range(0,301)]
#
# axarr[idt,0].plot([2900+5*j for j in range(0,60)], spikeshist, styles[iup], color=col_control)
# axarr[idt,1].plot([2900+j for j in range(0,301)], Vdend3hist, styles[iup], color=col_control)
# axarr[idt,2].plot([2900+j for j in range(0,301)], Cadend3hist, styles[iup], color=col_control)
# axarr[idt,3].plot([2900+j for j in range(0,301)], SKdend3hist, styles[iup], color=col_control)
#
# for iy in range(0,len(epspdts_savetimecourses)):
# axarr[iy,0].set_ylim([0,16])
# axarr[iy,0].set_ylabel(str(epspdts_savetimecourses[iy])+" ms", fontsize=7)
# for ix in range(0,4):
# axarr[iy,ix].set_xlim([2900,3200])
# for tick in axarr[iy,ix].xaxis.get_major_ticks() + axarr[iy,ix].yaxis.get_major_ticks():
# tick.label.set_fontsize(fs)
# f.savefig('updownresponsehist_noisy'+ext+'_cs'+str(icell)+'_dist'+str(proximalpoints[idist])+'_'+str(distalpoints[idist])+ext2+'_'+str(igene)+'_'+str(imut)+'_'+str(iallmutval)+'_'+str(rateCoeffs[iup][icoeff])+'.eps')
# # spikesThisIter.append(spikes[:])
# # spikesThisMutVal.append(spikesThisIter[:])
# #spikesAll.append(spikesThisMutVal[:])