/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__CaT
#define _nrn_initial _nrn_initial__CaT
#define nrn_cur _nrn_cur__CaT
#define _nrn_current _nrn_current__CaT
#define nrn_jacob _nrn_jacob__CaT
#define nrn_state _nrn_state__CaT
#define _net_receive _net_receive__CaT
#define _f_trates _f_trates__CaT
#define rates rates__CaT
#define states states__CaT
#define trates trates__CaT
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gbar _p[0]
#define gca _p[1]
#define minf _p[2]
#define hinf _p[3]
#define mtau _p[4]
#define htau _p[5]
#define m _p[6]
#define h _p[7]
#define ica _p[8]
#define eca _p[9]
#define tadj _p[10]
#define Dm _p[11]
#define Dh _p[12]
#define _g _p[13]
#define _ion_eca *_ppvar[0]._pval
#define _ion_ica *_ppvar[1]._pval
#define _ion_dicadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_rates(void);
static void _hoc_states(void);
static void _hoc_trates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_CaT", _hoc_setdata,
"rates_CaT", _hoc_rates,
"states_CaT", _hoc_states,
"trates_CaT", _hoc_trates,
0, 0
};
/* declare global and static user variables */
#define ah ah_CaT
double ah = 85;
#define am am_CaT
double am = 3;
#define cai cai_CaT
double cai = 0;
#define cao cao_CaT
double cao = 2.5;
#define usetable usetable_CaT
double usetable = 1;
#define vh2 vh2_CaT
double vh2 = 405;
#define vh1 vh1_CaT
double vh1 = 46;
#define vm2 vm2_CaT
double vm2 = 100;
#define vm1 vm1_CaT
double vm1 = 25;
#define vwh vwh_CaT
double vwh = 5;
#define vwm vwm_CaT
double vwm = 7.4;
#define v12h v12h_CaT
double v12h = 78;
#define v12m v12m_CaT
double v12m = 50;
#define vmax vmax_CaT
double vmax = 100;
#define vmin vmin_CaT
double vmin = -120;
#define vshift vshift_CaT
double vshift = 0;
#define wh2 wh2_CaT
double wh2 = 50;
#define wh1 wh1_CaT
double wh1 = 4;
#define wm2 wm2_CaT
double wm2 = 15;
#define wm1 wm1_CaT
double wm1 = 20;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_CaT", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vshift_CaT", "mV",
"cao_CaT", "mM",
"cai_CaT", "mM",
"vmin_CaT", "mV",
"vmax_CaT", "mV",
"v12m_CaT", "mV",
"v12h_CaT", "mV",
"vwm_CaT", "mV",
"vwh_CaT", "mV",
"am_CaT", "mV",
"ah_CaT", "mV",
"vm1_CaT", "mV",
"vm2_CaT", "mV",
"vh1_CaT", "mV",
"vh2_CaT", "mV",
"wm1_CaT", "mV",
"wm2_CaT", "mV",
"wh1_CaT", "mV",
"wh2_CaT", "mV",
"gbar_CaT", "mho/cm2",
"gca_CaT", "pS/um2",
"mtau_CaT", "ms",
"htau_CaT", "ms",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vshift_CaT", &vshift_CaT,
"cao_CaT", &cao_CaT,
"cai_CaT", &cai_CaT,
"vmin_CaT", &vmin_CaT,
"vmax_CaT", &vmax_CaT,
"v12m_CaT", &v12m_CaT,
"v12h_CaT", &v12h_CaT,
"vwm_CaT", &vwm_CaT,
"vwh_CaT", &vwh_CaT,
"am_CaT", &am_CaT,
"ah_CaT", &ah_CaT,
"vm1_CaT", &vm1_CaT,
"vm2_CaT", &vm2_CaT,
"vh1_CaT", &vh1_CaT,
"vh2_CaT", &vh2_CaT,
"wm1_CaT", &wm1_CaT,
"wm2_CaT", &wm2_CaT,
"wh1_CaT", &wh1_CaT,
"wh2_CaT", &wh2_CaT,
"usetable_CaT", &usetable_CaT,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"CaT",
"gbar_CaT",
0,
"gca_CaT",
"minf_CaT",
"hinf_CaT",
"mtau_CaT",
"htau_CaT",
0,
"m_CaT",
"h_CaT",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 14, _prop);
/*initialize range parameters*/
gbar = 0.0008;
_prop->param = _p;
_prop->param_size = 14;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* eca */
_ppvar[1]._pval = &prop_ion->param[3]; /* ica */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _CaT_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 14, 3);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 CaT /Users/landauland/Dropbox/SabatiniLab/neuron-modeling/smithAdaptation/mod.files/x86_64/CaT.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96485.3;
static double R = 8.3145;
static double PI = 3.14159;
static double _zmexp , _zhexp ;
static double *_t_minf;
static double *_t__zmexp;
static double *_t_hinf;
static double *_t__zhexp;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(double);
static int rates(double);
static int states();
static int trates(double);
static void _n_trates(double);
static int states ( ) {
trates ( _threadargscomma_ v + vshift ) ;
m = m + _zmexp * ( minf - m ) ;
h = h + _zhexp * ( hinf - h ) ;
/*VERBATIM*/
return 0;
return 0; }
static void _hoc_states(void) {
double _r;
_r = 1.;
states ( );
hoc_retpushx(_r);
}
static double _mfac_trates, _tmin_trates;
static void _check_trates();
static void _check_trates() {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_dt;
if (!usetable) {return;}
if (_sav_dt != dt) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_trates = vmin ;
_tmax = vmax ;
_dx = (_tmax - _tmin_trates)/199.; _mfac_trates = 1./_dx;
for (_i=0, _x=_tmin_trates; _i < 200; _x += _dx, _i++) {
_f_trates(_x);
_t_minf[_i] = minf;
_t__zmexp[_i] = _zmexp;
_t_hinf[_i] = hinf;
_t__zhexp[_i] = _zhexp;
}
_sav_dt = dt;
}
}
static int trates(double _lv){ _check_trates();
_n_trates(_lv);
return 0;
}
static void _n_trates(double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_trates(_lv); return;
}
_xi = _mfac_trates * (_lv - _tmin_trates);
if (isnan(_xi)) {
minf = _xi;
_zmexp = _xi;
hinf = _xi;
_zhexp = _xi;
return;
}
if (_xi <= 0.) {
minf = _t_minf[0];
_zmexp = _t__zmexp[0];
hinf = _t_hinf[0];
_zhexp = _t__zhexp[0];
return; }
if (_xi >= 199.) {
minf = _t_minf[199];
_zmexp = _t__zmexp[199];
hinf = _t_hinf[199];
_zhexp = _t__zhexp[199];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
_zmexp = _t__zmexp[_i] + _theta*(_t__zmexp[_i+1] - _t__zmexp[_i]);
hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]);
_zhexp = _t__zhexp[_i] + _theta*(_t__zhexp[_i+1] - _t__zhexp[_i]);
}
static int _f_trates ( double _lv ) {
double _ltinc ;
rates ( _threadargscomma_ _lv ) ;
_ltinc = - dt ;
_zmexp = 1.0 - exp ( _ltinc / mtau ) ;
_zhexp = 1.0 - exp ( _ltinc / htau ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
_r = 1.;
trates ( *getarg(1) );
hoc_retpushx(_r);
}
static int rates ( double _lv_ ) {
double _la , _lb ;
minf = 1.0 / ( 1.0 + exp ( - ( _lv_ + v12m ) / vwm ) ) ;
hinf = 1.0 / ( 1.0 + exp ( ( _lv_ + v12h ) / vwh ) ) ;
mtau = ( am + 1.0 / ( exp ( ( _lv_ + vm1 ) / wm1 ) + exp ( - ( _lv_ + vm2 ) / wm2 ) ) ) ;
htau = ( ah + 1.0 / ( exp ( ( _lv_ + vh1 ) / wh1 ) + exp ( - ( _lv_ + vh2 ) / wh2 ) ) ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("CaT", "cannot be used with CVODE"); return 0;}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
{
trates ( _threadargscomma_ v + vshift ) ;
m = minf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
eca = _ion_eca;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gca = gbar * m * m * h ;
ica = gca * ( v - eca ) ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
eca = _ion_eca;
_g = _nrn_current(_v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
eca = _ion_eca;
{ error = states();
if(error){fprintf(stderr,"at line 81 in file CaT.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_t_minf = makevector(200*sizeof(double));
_t__zmexp = makevector(200*sizeof(double));
_t_hinf = makevector(200*sizeof(double));
_t__zhexp = makevector(200*sizeof(double));
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/landauland/Dropbox/SabatiniLab/neuron-modeling/smithAdaptation/mod.files/CaT.mod";
static const char* nmodl_file_text =
"\n"
"COMMENT\n"
"T-type Ca channel \n"
"ca.mod to lead to thalamic ca current inspired by destexhe and huguenrd\n"
"Uses fixed eca instead of GHK eqn\n"
"changed from (AS Oct0899)\n"
"changed for use with Ri18 (B.Kampa 2005)\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX CaT\n"
" USEION ca READ eca WRITE ica\n"
" RANGE m, h, gca, gbar\n"
" RANGE minf, hinf, mtau, htau, inactF, actF\n"
" GLOBAL vshift,vmin,vmax, v12m, v12h, vwm, vwh, am, ah, vm1, vm2, vh1, vh2, wm1, wm2, wh1, wh2\n"
"}\n"
"\n"
"PARAMETER {\n"
" gbar = 0.0008 (mho/cm2) : 0.12 mho/cm2\n"
" vshift = 0 (mV) : voltage shift (affects all)\n"
"\n"
" cao = 2.5 (mM) : external ca concentration\n"
" cai (mM)\n"
" \n"
" v (mV)\n"
" dt (ms)\n"
" celsius (degC)\n"
" vmin = -120 (mV)\n"
" vmax = 100 (mV)\n"
"\n"
" v12m=50 (mV)\n"
" v12h=78 (mV)\n"
" vwm =7.4 (mV)\n"
" vwh=5.0 (mV)\n"
" am=3 (mV)\n"
" ah=85 (mV)\n"
" vm1=25 (mV)\n"
" vm2=100 (mV)\n"
" vh1=46 (mV)\n"
" vh2=405 (mV)\n"
" wm1=20 (mV)\n"
" wm2=15 (mV)\n"
" wh1=4 (mV)\n"
" wh2=50 (mV)\n"
"\n"
"\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" FARADAY = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
" PI = (pi) (1)\n"
"} \n"
"\n"
"ASSIGNED {\n"
" ica (mA/cm2)\n"
" gca (pS/um2)\n"
" eca (mV)\n"
" minf hinf\n"
" mtau (ms) htau (ms)\n"
" tadj\n"
"}\n"
" \n"
"\n"
"STATE { m h }\n"
"\n"
"INITIAL { \n"
" trates(v+vshift)\n"
" m = minf\n"
" h = hinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states\n"
" gca = gbar*m*m*h\n"
" ica = gca * (v - eca)\n"
"} \n"
"\n"
"LOCAL mexp, hexp\n"
"\n"
"PROCEDURE states() {\n"
" trates(v+vshift) \n"
" m = m + mexp*(minf-m)\n"
" h = h + hexp*(hinf-h)\n"
" VERBATIM\n"
" return 0;\n"
" ENDVERBATIM\n"
"}\n"
"\n"
"\n"
"PROCEDURE trates(v) { \n"
" \n"
" LOCAL tinc\n"
" TABLE minf, mexp, hinf, hexp\n"
" DEPEND dt \n"
" FROM vmin TO vmax WITH 199\n"
"\n"
" rates(v): not consistently executed from here if usetable == 1\n"
"\n"
" tinc = -dt \n"
"\n"
" mexp = 1 - exp(tinc/mtau)\n"
" hexp = 1 - exp(tinc/htau)\n"
"}\n"
"\n"
"\n"
"PROCEDURE rates(v_) { \n"
" LOCAL a, b\n"
"\n"
" minf = 1.0 / ( 1 + exp(-(v_+v12m)/vwm) )\n"
" hinf = 1.0 / ( 1 + exp((v_+v12h)/vwh) )\n"
"\n"
" mtau = ( am + 1.0 / ( exp((v_+vm1)/wm1) + exp(-(v_+vm2)/wm2) ) ) \n"
" htau = ( ah + 1.0 / ( exp((v_+vh1)/wh1) + exp(-(v_+vh2)/wh2) ) ) \n"
"}\n"
"\n"
;
#endif