/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__caL3d
#define _nrn_initial _nrn_initial__caL3d
#define nrn_cur _nrn_cur__caL3d
#define _nrn_current _nrn_current__caL3d
#define nrn_jacob _nrn_jacob__caL3d
#define nrn_state _nrn_state__caL3d
#define _net_receive _net_receive__caL3d
#define _f_rates _f_rates__caL3d
#define kstates kstates__caL3d
#define rates rates__caL3d
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define a _p[0]
#define b _p[1]
#define C _p[2]
#define O _p[3]
#define ica _p[4]
#define cao _p[5]
#define cai _p[6]
#define DC _p[7]
#define DO _p[8]
#define _g _p[9]
#define _ion_cai *_ppvar[0]._pval
#define _ion_cao *_ppvar[1]._pval
#define _ion_ica *_ppvar[2]._pval
#define _ion_dicadv *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_efun(void);
static void _hoc_ghk(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_caL3d", _hoc_setdata,
"efun_caL3d", _hoc_efun,
"ghk_caL3d", _hoc_ghk,
"rates_caL3d", _hoc_rates,
0, 0
};
#define efun efun_caL3d
#define ghk ghk_caL3d
extern double efun( double );
extern double ghk( double , double , double );
/* declare global and static user variables */
#define Rb Rb_caL3d
double Rb = 0.2;
#define Ra Ra_caL3d
double Ra = 1.6;
#define p p_caL3d
double p = 0.0002;
#define q10 q10_caL3d
double q10 = 3;
#define q q_caL3d
double q = 13;
#define tadj tadj_caL3d
double tadj = 0;
#define temp temp_caL3d
double temp = 22;
#define th th_caL3d
double th = 5;
#define usetable usetable_caL3d
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_caL3d", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"p_caL3d", "cm/s",
"th_caL3d", "mV",
"q_caL3d", "mV",
"Ra_caL3d", "/ms",
"Rb_caL3d", "/ms",
"temp_caL3d", "degC",
"a_caL3d", "/ms",
"b_caL3d", "/ms",
0,0
};
static double C0 = 0;
static double O0 = 0;
static double delta_t = 1;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"p_caL3d", &p_caL3d,
"th_caL3d", &th_caL3d,
"q_caL3d", &q_caL3d,
"Ra_caL3d", &Ra_caL3d,
"Rb_caL3d", &Rb_caL3d,
"temp_caL3d", &temp_caL3d,
"q10_caL3d", &q10_caL3d,
"tadj_caL3d", &tadj_caL3d,
"usetable_caL3d", &usetable_caL3d,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"caL3d",
0,
"a_caL3d",
"b_caL3d",
0,
"C_caL3d",
"O_caL3d",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 10, _prop);
/*initialize range parameters*/
_prop->param = _p;
_prop->param_size = 10;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
_ppvar[1]._pval = &prop_ion->param[2]; /* cao */
_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _caL3d_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 10, 5);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 caL3d /Users/landauland/Dropbox/SabatiniLab/neuron-modeling/smithAdaptation/mod.files/x86_64/caL3d.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double F = 96485.3;
static double R = 8.3145;
static double *_t_a;
static double *_t_b;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_rates(double);
static int rates(double);
extern double *_getelm();
#define _MATELM1(_row,_col) *(_getelm(_row + 1, _col + 1))
#define _RHS1(_arg) _coef1[_arg + 1]
static double *_coef1;
#define _linmat1 1
static void* _sparseobj1;
static void* _cvsparseobj1;
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static void _n_rates(double);
static int _slist1[2], _dlist1[2]; static double *_temp1;
static int kstates();
static int kstates ()
{_reset=0;
{
double b_flux, f_flux, _term; int _i;
{int _i; double _dt1 = 1.0/dt;
for(_i=1;_i<2;_i++){
_RHS1(_i) = -_dt1*(_p[_slist1[_i]] - _p[_dlist1[_i]]);
_MATELM1(_i, _i) = _dt1;
} }
/* ~ C <-> O ( a , b )*/
f_flux = a * C ;
b_flux = b * O ;
_RHS1( 1) -= (f_flux - b_flux);
_term = a ;
_MATELM1( 1 ,1) += _term;
_term = b ;
_MATELM1( 1 ,0) -= _term;
/*REACTION*/
/* C + O = 1.0 */
_RHS1(0) = 1.0;
_MATELM1(0, 0) = 1;
_RHS1(0) -= O ;
_MATELM1(0, 1) = 1;
_RHS1(0) -= C ;
/*CONSERVATION*/
} return _reset;
}
static double _mfac_rates, _tmin_rates;
static void _check_rates();
static void _check_rates() {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_Ra;
static double _sav_Rb;
static double _sav_th;
static double _sav_celsius;
static double _sav_temp;
static double _sav_q10;
if (!usetable) {return;}
if (_sav_Ra != Ra) { _maktable = 1;}
if (_sav_Rb != Rb) { _maktable = 1;}
if (_sav_th != th) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_temp != temp) { _maktable = 1;}
if (_sav_q10 != q10) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_rates = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_rates)/200.; _mfac_rates = 1./_dx;
for (_i=0, _x=_tmin_rates; _i < 201; _x += _dx, _i++) {
_f_rates(_x);
_t_a[_i] = a;
_t_b[_i] = b;
}
_sav_Ra = Ra;
_sav_Rb = Rb;
_sav_th = th;
_sav_celsius = celsius;
_sav_temp = temp;
_sav_q10 = q10;
}
}
static int rates(double _lv){ _check_rates();
_n_rates(_lv);
return 0;
}
static void _n_rates(double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_rates(_lv); return;
}
_xi = _mfac_rates * (_lv - _tmin_rates);
if (isnan(_xi)) {
a = _xi;
b = _xi;
return;
}
if (_xi <= 0.) {
a = _t_a[0];
b = _t_b[0];
return; }
if (_xi >= 200.) {
a = _t_a[200];
b = _t_b[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
a = _t_a[_i] + _theta*(_t_a[_i+1] - _t_a[_i]);
b = _t_b[_i] + _theta*(_t_b[_i+1] - _t_b[_i]);
}
static int _f_rates ( double _lv ) {
tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ;
a = Ra / ( 1.0 + exp ( - ( _lv - th ) / q ) ) * tadj ;
b = Rb / ( 1.0 + exp ( ( _lv - th ) / q ) ) * tadj ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double ghk ( double _lv , double _lci , double _lco ) {
double _lghk;
double _lz ;
_lz = ( 0.001 ) * 2.0 * F * _lv / ( R * ( celsius + 273.15 ) ) ;
_lghk = ( .001 ) * 2.0 * F * ( _lci * efun ( _threadargscomma_ - _lz ) - _lco * efun ( _threadargscomma_ _lz ) ) ;
return _lghk;
}
static void _hoc_ghk(void) {
double _r;
_r = ghk ( *getarg(1) , *getarg(2) , *getarg(3) );
hoc_retpushx(_r);
}
double efun ( double _lz ) {
double _lefun;
if ( fabs ( _lz ) < 1e-4 ) {
_lefun = 1.0 - _lz / 2.0 ;
}
else {
_lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
}
return _lefun;
}
static void _hoc_efun(void) {
double _r;
_r = efun ( *getarg(1) );
hoc_retpushx(_r);
}
/*CVODE ode begin*/
static int _ode_spec1() {_reset=0;{
double b_flux, f_flux, _term; int _i;
{int _i; for(_i=0;_i<2;_i++) _p[_dlist1[_i]] = 0.0;}
/* ~ C <-> O ( a , b )*/
f_flux = a * C ;
b_flux = b * O ;
DC -= (f_flux - b_flux);
DO += (f_flux - b_flux);
/*REACTION*/
/* C + O = 1.0 */
/*CONSERVATION*/
} return _reset;
}
/*CVODE matsol*/
static int _ode_matsol1() {_reset=0;{
double b_flux, f_flux, _term; int _i;
b_flux = f_flux = 0.;
{int _i; double _dt1 = 1.0/dt;
for(_i=0;_i<2;_i++){
_RHS1(_i) = _dt1*(_p[_dlist1[_i]]);
_MATELM1(_i, _i) = _dt1;
} }
/* ~ C <-> O ( a , b )*/
_term = a ;
_MATELM1( 1 ,1) += _term;
_MATELM1( 0 ,1) -= _term;
_term = b ;
_MATELM1( 1 ,0) -= _term;
_MATELM1( 0 ,0) += _term;
/*REACTION*/
/* C + O = 1.0 */
/*CONSERVATION*/
} return _reset;
}
/*CVODE end*/
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_cvode_sparse(&_cvsparseobj1, 2, _dlist1, _p, _ode_matsol1, &_coef1);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 2);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
C = C0;
O = O0;
{
C = 1.0 ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
cao = _ion_cao;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
rates ( _threadargscomma_ v ) ;
ica = O * p * ghk ( _threadargscomma_ v , cai , cao ) ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
cao = _ion_cao;
_g = _nrn_current(_v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
double _dtsav = dt;
if (secondorder) { dt *= 0.5; }
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
cao = _ion_cao;
{ error = sparse(&_sparseobj1, 2, _slist1, _dlist1, _p, &t, dt, kstates,&_coef1, _linmat1);
if(error){fprintf(stderr,"at line 98 in file caL3d.mod:\n SOLVE kstates METHOD sparse\n"); nrn_complain(_p); abort_run(error);}
if (secondorder) {
int _i;
for (_i = 0; _i < 2; ++_i) {
_p[_slist1[_i]] += dt*_p[_dlist1[_i]];
}}
} }}
dt = _dtsav;
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_t_a = makevector(201*sizeof(double));
_t_b = makevector(201*sizeof(double));
_slist1[0] = &(O) - _p; _dlist1[0] = &(DO) - _p;
_slist1[1] = &(C) - _p; _dlist1[1] = &(DC) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/landauland/Dropbox/SabatiniLab/neuron-modeling/smithAdaptation/mod.files/caL3d.mod";
static const char* nmodl_file_text =
"\n"
"COMMENT\n"
"\n"
"High threshold Ca2+ channel\n"
"\n"
"2-state kinetics with sigmoidal voltage-dependence\n"
"\n"
" C<->O\n"
"\n"
"Goldman-Hodgkin-Katz equations\n"
"\n"
" # MODEL\n"
" | MODEL AUTHOR : D.A. McCormick & J. Huguenard\n"
" | MODEL DATE : 1992\n"
" | MODEL REF : A model of the electrophysiological properties of \n"
"thalamocortical relay neurons. J Neurophysiol, 1992 Oct, 68(4):1384-400.\n"
" \n"
" # EXPERIMENT\n"
" | EXP AUTHOR : Kay AR; Wong RK\n"
" | EXP DATE : 1987\n"
" | EXP REF : Journal of Physiology, 1987 Nov, 392:603-16.\n"
" | ANIMAL : guinea-pig\n"
" | BRAIN REGION : hippocampus\n"
" | CELL TYPE : Ca1 pyramidal\n"
" | TECHNIQUE : slices, whole-cell\n"
" | RECORDING METHOD : voltage-clamp\n"
" | TEMPERATURE : 20-22\n"
" \n"
"Reference:\n"
"\n"
" Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for\n"
" excitable membranes, synaptic transmission and neuromodulation using a \n"
" common kinetic formalism, Journal of Computational Neuroscience 1: \n"
" 195-230, 1994.\n"
"\n"
" (electronic copy available at http://cns.iaf.cnrs-gif.fr)\n"
"\n"
"\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX caL3d\n"
" USEION ca READ cai, cao WRITE ica\n"
" RANGE O, C, I\n"
" RANGE a,b\n"
" GLOBAL Ra, Rb, q, th, p\n"
" GLOBAL q10, temp, tadj\n"
"}\n"
"\n"
"UNITS {\n"
" F = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" (mM) = (milli/liter)\n"
"} \n"
"\n"
"PARAMETER {\n"
" p = 0.2e-3 (cm/s) : max permeability\n"
" v (mV)\n"
"\n"
" th = 5 (mV) : v 1/2 for on/off\n"
" q = 13 (mV) : voltage dependence\n"
"\n"
" : max rates\n"
"\n"
" Ra = 1.6 (/ms) : open (v)\n"
" Rb = 0.2 (/ms) : close (v)\n"
"\n"
" celsius (degC)\n"
" temp = 22 (degC) : original temp\n"
" q10 = 3 : temperature sensitivity\n"
"} \n"
"\n"
"\n"
"ASSIGNED {\n"
" ica (mA/cm2)\n"
" cao (mM)\n"
" cai (mM)\n"
" a (/ms) b (/ms)\n"
" tadj\n"
"}\n"
" \n"
"\n"
"STATE { C O }\n"
"\n"
"INITIAL { \n"
" C = 1 \n"
"}\n"
"\n"
"\n"
"BREAKPOINT {\n"
" rates(v)\n"
" SOLVE kstates METHOD sparse\n"
" ica = O * p * ghk(v,cai,cao)\n"
"} \n"
"\n"
"\n"
"KINETIC kstates {\n"
" ~ C <-> O (a,b) \n"
" CONSERVE C+O = 1\n"
"} \n"
" \n"
"PROCEDURE rates(v(mV)) {\n"
" TABLE a, b\n"
" DEPEND Ra, Rb, th, celsius, temp, q10\n"
" FROM -100 TO 100 WITH 200\n"
"\n"
" tadj = q10 ^ ((celsius - temp)/10 (degC))\n"
"\n"
" a = Ra / (1 + exp(-(v-th)/q)) * tadj\n"
" b = Rb / (1 + exp((v-th)/q)) * tadj\n"
"}\n"
"\n"
": Special gear for calculating the Ca2+ reversal potential\n"
": via Goldman-Hodgkin-Katz eqn.\n"
": [Ca2+]o \"cao\" and [Ca2+]i \"cai\" are assumed to be set elsewhere\n"
"\n"
"\n"
"FUNCTION ghk(v(mV), ci(mM), co(mM)) (0.001 coul/cm3) {\n"
" LOCAL z\n"
"\n"
" z = (0.001)*2*F*v/(R*(celsius+273.15))\n"
" ghk = (.001)*2*F*(ci*efun(-z) - co*efun(z))\n"
"}\n"
"\n"
"FUNCTION efun(z) {\n"
" if (fabs(z) < 1e-4) {\n"
" efun = 1 - z/2\n"
" }else{\n"
" efun = z/(exp(z) - 1)\n"
" }\n"
"}\n"
"\n"
"\n"
"\n"
"\n"
;
#endif