#ifndef _NR3_H_
#define _NR3_H_
//#ifdef _WIN32
//#define dir_sep ((const unsigned char *)"\\")
//#elif __unix__
//
//#endif
//#ifdef __unix__
//#define dir_sep ((const char *)"/")
//#elif _WIN32
//#define dir_sep ((const char *)"\\")
//#endif
//#define __unix__
//#define _CHECKBOUNDS_ 1
//#define _USESTDVECTOR_ 1
//#define _USENRERRORCLASS_ 1
//#define _TURNONFPES_ 1
// all the system #include's we'll ever need
//additional (NeuralMerge):
#include <random>
#include <cstdio>
#include <sstream>
//
#ifdef _WIN32
#include <direct.h>// problematic *** unix 14.12
#elif __unix__
#include <sys/stat.h>// problematic *** unix
#endif
#include <algorithm>
//--
#include <fstream>
#include <cmath>
#include <complex>
#include <iostream>
#include <iomanip>
#include <vector>
#include <limits>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
#ifdef _WIN32
#define dir_sep ((const char*) "\\\\")
//const char* dir_sep = "\\";
#elif __unix__
#define dir_sep ((const char*) "/")
//const char* dir_sep = "/";
#endif
using namespace std;
// macro-like inline functions
template<class T>
inline T SQR(const T a) {return a*a;}
template<class T>
inline const T &MAX(const T &a, const T &b)
{return b > a ? (b) : (a);}
inline float MAX(const double &a, const float &b)
{return b > a ? (b) : float(a);}
inline float MAX(const float &a, const double &b)
{return b > a ? float(b) : (a);}
template<class T>
inline const T &MIN(const T &a, const T &b)
{return b < a ? (b) : (a);}
inline float MIN(const double &a, const float &b)
{return b < a ? (b) : float(a);}
inline float MIN(const float &a, const double &b)
{return b < a ? float(b) : (a);}
template<class T>
inline T SIGN(const T &a, const T &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const float &a, const double &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const double &a, const float &b)
{return (float)(b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a));}
template<class T>
inline void SWAP(T &a, T &b)
{T dum=a; a=b; b=dum;}
// exception handling
#ifndef _USENRERRORCLASS_
#define throw(message) \
{printf("ERROR: %s\n in file %s at line %d\n", message,__FILE__,__LINE__); throw(1);}
#else
struct NRerror {
char *message;
char *file;
int line;
NRerror(char *m, char *f, int l) : message(m), file(f), line(l) {}
};
#define throw(message) throw(NRerror(message,__FILE__,__LINE__));
void NRcatch(NRerror err) {
printf("ERROR: %s\n in file %s at line %d\n",
err.message, err.file, err.line);
exit(1);
}
#endif
// usage example:
//
// try {
// somebadroutine();
// }
// catch(NRerror s) {NRcatch(s);}
//
// (You can of course substitute any other catch body for NRcatch(s).)
// Vector and Matrix Classes
#ifdef _USESTDVECTOR_
#define NRvector vector
#else
template <class T>
class NRvector {
private:
int nn; // size of array. upper index is nn-1
T *v;
public:
NRvector();
explicit NRvector(int n); // Zero-based array
NRvector(int n, const T &a); //initialize to constant value
NRvector(int n, const T *a); // Initialize to array
NRvector(const NRvector &rhs); // Copy constructor
NRvector & operator=(const NRvector &rhs); //assignment
typedef T value_type; // make T available externally
inline T & operator[](const int i); //i'th element
inline const T & operator[](const int i) const;
inline int size() const;
void resize(int newn); // resize (contents not preserved)
void assign(int newn, const T &a); // resize and assign a constant value
~NRvector();
};
// NRvector definitions
template <class T>
NRvector<T>::NRvector() : nn(0), v(NULL) {}
template <class T>
NRvector<T>::NRvector(int n) : nn(n), v(n>0 ? new T[n] : NULL) {}
template <class T>
NRvector<T>::NRvector(int n, const T& a) : nn(n), v(n>0 ? new T[n] : NULL)
{
for(int i=0; i<n; i++) v[i] = a;
}
template <class T>
NRvector<T>::NRvector(int n, const T *a) : nn(n), v(n>0 ? new T[n] : NULL)
{
for(int i=0; i<n; i++) v[i] = *a++;
}
template <class T>
NRvector<T>::NRvector(const NRvector<T> &rhs) : nn(rhs.nn), v(nn>0 ? new T[nn] : NULL)
{
for(int i=0; i<nn; i++) v[i] = rhs[i];
}
template <class T>
NRvector<T> & NRvector<T>::operator=(const NRvector<T> &rhs)
// postcondition: normal assignment via copying has been performed;
// if vector and rhs were different sizes, vector
// has been resized to match the size of rhs
{
if (this != &rhs)
{
if (nn != rhs.nn) {
if (v != NULL) delete [] (v);
nn=rhs.nn;
v= nn>0 ? new T[nn] : NULL;
}
for (int i=0; i<nn; i++)
v[i]=rhs[i];
}
return *this;
}
template <class T>
inline T & NRvector<T>::operator[](const int i) //subscripting
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRvector subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline const T & NRvector<T>::operator[](const int i) const //subscripting
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRvector subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline int NRvector<T>::size() const
{
return nn;
}
template <class T>
void NRvector<T>::resize(int newn)
{
if (newn != nn) {
if (v != NULL) delete[] (v);
nn = newn;
v = nn > 0 ? new T[nn] : NULL;
}
}
template <class T>
void NRvector<T>::assign(int newn, const T& a)
{
if (newn != nn) {
if (v != NULL) delete[] (v);
nn = newn;
v = nn > 0 ? new T[nn] : NULL;
}
for (int i=0;i<nn;i++) v[i] = a;
}
template <class T>
NRvector<T>::~NRvector()
{
if (v != NULL) delete[] (v);
}
// end of NRvector definitions
#endif //ifdef _USESTDVECTOR_
template <class T>
class NRmatrix {
private:
int nn;
int mm;
T **v;
public:
NRmatrix();
NRmatrix(int n, int m); // Zero-based array
NRmatrix(int n, int m, const T &a); //Initialize to constant
NRmatrix(int n, int m, const T *a); // Initialize to array
NRmatrix(const NRmatrix &rhs); // Copy constructor
NRmatrix & operator=(const NRmatrix &rhs); //assignment
typedef T value_type; // make T available externally
inline T* operator[](const int i); //subscripting: pointer to row i
inline const T* operator[](const int i) const;
inline int nrows() const;
inline int ncols() const;
void resize(int newn, int newm); // resize (contents not preserved)
void assign(int newn, int newm, const T &a); // resize and assign a constant value
~NRmatrix();
};
template <class T>
NRmatrix<T>::NRmatrix() : nn(0), mm(0), v(NULL) {}
template <class T>
NRmatrix<T>::NRmatrix(int n, int m) : nn(n), mm(m), v(n>0 ? new T*[n] : NULL)
{
int i,nel=m*n;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1;i<n;i++) v[i] = v[i-1] + m;
}
template <class T>
NRmatrix<T>::NRmatrix(int n, int m, const T &a) : nn(n), mm(m), v(n>0 ? new T*[n] : NULL)
{
int i,j,nel=m*n;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< n; i++) v[i] = v[i-1] + m;
for (i=0; i< n; i++) for (j=0; j<m; j++) v[i][j] = a;
}
template <class T>
NRmatrix<T>::NRmatrix(int n, int m, const T *a) : nn(n), mm(m), v(n>0 ? new T*[n] : NULL)
{
int i,j,nel=m*n;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< n; i++) v[i] = v[i-1] + m;
for (i=0; i< n; i++) for (j=0; j<m; j++) v[i][j] = *a++;
}
template <class T>
NRmatrix<T>::NRmatrix(const NRmatrix &rhs) : nn(rhs.nn), mm(rhs.mm), v(nn>0 ? new T*[nn] : NULL)
{
int i,j,nel=mm*nn;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< nn; i++) v[i] = v[i-1] + mm;
for (i=0; i< nn; i++) for (j=0; j<mm; j++) v[i][j] = rhs[i][j];
}
template <class T>
NRmatrix<T> & NRmatrix<T>::operator=(const NRmatrix<T> &rhs)
// postcondition: normal assignment via copying has been performed;
// if matrix and rhs were different sizes, matrix
// has been resized to match the size of rhs
{
if (this != &rhs) {
int i,j,nel;
if (nn != rhs.nn || mm != rhs.mm) {
if (v != NULL) {
delete[] (v[0]);
delete[] (v);
}
nn=rhs.nn;
mm=rhs.mm;
v = nn>0 ? new T*[nn] : NULL;
nel = mm*nn;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< nn; i++) v[i] = v[i-1] + mm;
}
for (i=0; i< nn; i++) for (j=0; j<mm; j++) v[i][j] = rhs[i][j];
}
return *this;
}
template <class T>
inline T* NRmatrix<T>::operator[](const int i) //subscripting: pointer to row i
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRmatrix subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline const T* NRmatrix<T>::operator[](const int i) const
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRmatrix subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline int NRmatrix<T>::nrows() const
{
return nn;
}
template <class T>
inline int NRmatrix<T>::ncols() const
{
return mm;
}
template <class T>
void NRmatrix<T>::resize(int newn, int newm)
{
int i,nel;
if (newn != nn || newm != mm) {
if (v != NULL) {
delete[] (v[0]);
delete[] (v);
}
nn = newn;
mm = newm;
v = nn>0 ? new T*[nn] : NULL;
nel = mm*nn;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< nn; i++) v[i] = v[i-1] + mm;
}
}
template <class T>
void NRmatrix<T>::assign(int newn, int newm, const T& a)
{
int i,j,nel;
if (newn != nn || newm != mm) {
if (v != NULL) {
delete[] (v[0]);
delete[] (v);
}
nn = newn;
mm = newm;
v = nn>0 ? new T*[nn] : NULL;
nel = mm*nn;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1; i< nn; i++) v[i] = v[i-1] + mm;
}
for (i=0; i< nn; i++) for (j=0; j<mm; j++) v[i][j] = a;
}
template <class T>
NRmatrix<T>::~NRmatrix()
{
if (v != NULL) {
delete[] (v[0]);
delete[] (v);
}
}
template <class T>
class NRMat3d {
private:
int nn;
int mm;
int kk;
T ***v;
public:
NRMat3d();
NRMat3d(int n, int m, int k);
inline T** operator[](const int i); //subscripting: pointer to row i
inline const T* const * operator[](const int i) const;
inline int dim1() const;
inline int dim2() const;
inline int dim3() const;
~NRMat3d();
};
template <class T>
NRMat3d<T>::NRMat3d(): nn(0), mm(0), kk(0), v(NULL) {}
template <class T>
NRMat3d<T>::NRMat3d(int n, int m, int k) : nn(n), mm(m), kk(k), v(new T**[n])
{
int i,j;
v[0] = new T*[n*m];
v[0][0] = new T[n*m*k];
for(j=1; j<m; j++) v[0][j] = v[0][j-1] + k;
for(i=1; i<n; i++) {
v[i] = v[i-1] + m;
v[i][0] = v[i-1][0] + m*k;
for(j=1; j<m; j++) v[i][j] = v[i][j-1] + k;
}
}
template <class T>
inline T** NRMat3d<T>::operator[](const int i) //subscripting: pointer to row i
{
return v[i];
}
template <class T>
inline const T* const * NRMat3d<T>::operator[](const int i) const
{
return v[i];
}
template <class T>
inline int NRMat3d<T>::dim1() const
{
return nn;
}
template <class T>
inline int NRMat3d<T>::dim2() const
{
return mm;
}
template <class T>
inline int NRMat3d<T>::dim3() const
{
return kk;
}
template <class T>
NRMat3d<T>::~NRMat3d()
{
if (v != NULL) {
delete[] (v[0][0]);
delete[] (v[0]);
delete[] (v);
}
}
// basic type names (redefine if your bit lengths don't match)
typedef int Int; // 32 bit integer
typedef unsigned int Uint;
#ifdef _MSC_VER
typedef __int64 Llong; // 64 bit integer
typedef unsigned __int64 Ullong;
#else
typedef long long int Llong; // 64 bit integer
typedef unsigned long long int Ullong;
#endif
typedef char Char; // 8 bit integer
typedef unsigned char Uchar;
typedef double Doub; // default floating type
typedef long double Ldoub;
typedef complex<double> Complex; // default complex type
typedef bool Bool;
// NaN: uncomment one of the following 3 methods of defining a global NaN
// you can test by verifying that (NaN != NaN) is true
static const Doub NaN = numeric_limits<Doub>::quiet_NaN();
//Uint proto_nan[2]={0xffffffff, 0x7fffffff};
//double NaN = *( double* )proto_nan;
//Doub NaN = sqrt(-1.);
// vector types
typedef const NRvector<Int> VecInt_I;
typedef NRvector<Int> VecInt, VecInt_O, VecInt_IO;
typedef const NRvector<Uint> VecUint_I;
typedef NRvector<Uint> VecUint, VecUint_O, VecUint_IO;
typedef const NRvector<Llong> VecLlong_I;
typedef NRvector<Llong> VecLlong, VecLlong_O, VecLlong_IO;
typedef const NRvector<Ullong> VecUllong_I;
typedef NRvector<Ullong> VecUllong, VecUllong_O, VecUllong_IO;
typedef const NRvector<Char> VecChar_I;
typedef NRvector<Char> VecChar, VecChar_O, VecChar_IO;
typedef const NRvector<Char*> VecCharp_I;
typedef NRvector<Char*> VecCharp, VecCharp_O, VecCharp_IO;
typedef const NRvector<Uchar> VecUchar_I;
typedef NRvector<Uchar> VecUchar, VecUchar_O, VecUchar_IO;
typedef const NRvector<Doub> VecDoub_I;
typedef NRvector<Doub> VecDoub, VecDoub_O, VecDoub_IO;
typedef const NRvector<Doub*> VecDoubp_I;
typedef NRvector<Doub*> VecDoubp, VecDoubp_O, VecDoubp_IO;
typedef const NRvector<Complex> VecComplex_I;
typedef NRvector<Complex> VecComplex, VecComplex_O, VecComplex_IO;
typedef const NRvector<Bool> VecBool_I;
typedef NRvector<Bool> VecBool, VecBool_O, VecBool_IO;
// matrix types
typedef const NRmatrix<Int> MatInt_I;
typedef NRmatrix<Int> MatInt, MatInt_O, MatInt_IO;
typedef const NRmatrix<Uint> MatUint_I;
typedef NRmatrix<Uint> MatUint, MatUint_O, MatUint_IO;
typedef const NRmatrix<Llong> MatLlong_I;
typedef NRmatrix<Llong> MatLlong, MatLlong_O, MatLlong_IO;
typedef const NRmatrix<Ullong> MatUllong_I;
typedef NRmatrix<Ullong> MatUllong, MatUllong_O, MatUllong_IO;
typedef const NRmatrix<Char> MatChar_I;
typedef NRmatrix<Char> MatChar, MatChar_O, MatChar_IO;
typedef const NRmatrix<Uchar> MatUchar_I;
typedef NRmatrix<Uchar> MatUchar, MatUchar_O, MatUchar_IO;
typedef const NRmatrix<Doub> MatDoub_I;
typedef NRmatrix<Doub> MatDoub, MatDoub_O, MatDoub_IO;
typedef const NRmatrix<Bool> MatBool_I;
typedef NRmatrix<Bool> MatBool, MatBool_O, MatBool_IO;
// 3D matrix types
typedef const NRMat3d<Doub> Mat3DDoub_I;
typedef NRMat3d<Doub> Mat3DDoub, Mat3DDoub_O, Mat3DDoub_IO;
// Floating Point Exceptions for Microsoft compilers
#ifdef _TURNONFPES_
#ifdef _MSC_VER
struct turn_on_floating_exceptions {
turn_on_floating_exceptions() {
int cw = _controlfp( 0, 0 );
cw &=~(EM_INVALID | EM_OVERFLOW | EM_ZERODIVIDE );
_controlfp( cw, MCW_EM );
}
};
turn_on_floating_exceptions yes_turn_on_floating_exceptions;
#endif /* _MSC_VER */
#endif /* _TURNONFPES */
#endif /* _NR3_H_ */