#!/usr/bin/python
# This program computes statistics and standard deviation of FR, Zmd and Zphi
# values from tc.avr.?? .
import sys
import math
import collections
import numpy as np
# This function calculate the average and the standard deviation, given the
# sum, the sum of squares, and the number of data items.
def avr_sd_cal(sumvalZ, sumvalZsq, nparZ):
if (nparZ <= 0):
avvalZ = -999.9
avvalZsq = -999.8
diffZ = -999.7
sigvalZ = -999.6
else:
avvalZ = sumvalZ / nparZ
avvalZsq = sumvalZsq / nparZ
diffZ = avvalZsq - avvalZ * avvalZ
if (diffZ >= 0.0):
sigvalZ = math.sqrt(diffZ)
else:
sigvalZ = -999.7
# print 'nparZ=', nparZ, 'avvalZ=', avvalZ, 'sigvalZ=', sigvalZ
return avvalZ, sigvalZ
# This function reads a specific column and writes the average and the
# standard deviation.
def one_column_calculate_statistics(flread, flwrite, col_num):
par_old = -999.999
npar_all = 0
nparZ = 0
sumvalZ = 0.0
sumvalZsq = 0.0
flread.seek(0)
for line in flread:
val_list = line.split()
par = float(val_list[0])
valZ = float(val_list[col_num])
npar_all += 1
if par != par_old:
if (npar_all > 1):
avvalZ, sigvalZ = avr_sd_cal(sumvalZ, sumvalZsq, nparZ)
# flwrite.write('{0:g} {1:g} {2:g} {3:d}\n'.format( \
# par_old * factor, sumvalZ, sumvalZsq, nparZ))
if (avvalZ >= 0.0):
flwrite.write('{0:g} {1:g} {2:g}\n'.format( \
par_old * factor, avvalZ, sigvalZ))
nparZ = 1
sumvalZ = valZ
sumvalZsq = valZ * valZ
par_old = par
else:
nparZ += 1
sumvalZ += valZ
sumvalZsq += valZ * valZ
if (npar_all > 0):
avvalZ, sigvalZ = avr_sd_cal(sumvalZ, sumvalZsq, nparZ)
# flwrite.write('{0:g} {1:g} {2:g} {3:d}\n'.format(par_old * factor, sumvalZ, sumvalZsq, nparZ)
if (avvalZ >= 0.0):
flwrite.write('{0:g} {1:g} {2:g}\n'.format(par_old * factor, avvalZ, sigvalZ))
# This function calculates the average and the correlation matrix, given a
# vector of sums, a matrix of sums of squares, and the number of data items.
def avr_CC_cal(sumZcs, sumZZcs, nparZ):
avZcs = np.array([-999.9, -999.8])
CCZcs = np.array([[-998.9, -998.8], [-998.7, -998.7]])
if (nparZ > 0):
avZcs[0] = sumZcs[0] / nparZ
avZcs[1] = sumZcs[1] / nparZ
CCZcs[0,0] = sumZZcs[0,0] / nparZ - avZcs[0] * avZcs[0]
CCZcs[0,1] = sumZZcs[0,1] / nparZ - avZcs[0] * avZcs[1]
CCZcs[1,0] = sumZZcs[1,0] / nparZ - avZcs[1] * avZcs[0]
CCZcs[1,1] = sumZZcs[1,1] / nparZ - avZcs[1] * avZcs[1]
return avZcs, CCZcs
# This function computes the correlation matrix of Zmd and Zphi given the
# correnation matrix of Zcos and Zsin. Then, it calculates the standard
# deviations of Zmd and Zphi.
def compute_error_bars_md_phi(avZcs, CCZcs, avZmd):
avZmdsq = avZmd * avZmd
Amat = np.array([[ avZcs[0]/avZmd, avZcs[1]/avZmd], \
[-avZcs[1]/avZmdsq, avZcs[0]/avZmdsq]])
AmatT = Amat.T
CCZmp = (Amat.dot(CCZcs)).dot(AmatT)
# print 'Amat=', Amat, '\nAmatT=', AmatT, '\nCCZcs=', CCZcs, '\nCCZmp=', CCZmp
if (CCZmp[0,0] >= 0.0):
sigmd = math.sqrt(CCZmp[0,0])
else:
sigmd = -997.9
if (CCZmp[1,1] >= 0.0):
sigphi = math.sqrt(CCZmp[1,1])
else:
sigphi = -997.8
return sigmd, sigphi
# This function reads a specific two column for Zmd and Zphi and writes their
# averages and standard deviations.
def two_column_calculate_statistics(flread, flwritea, flwriteb, col_num):
par_old = -999.999
npar_all = 0
nparZ = 0
sumZcs = np.array([0.0, 0.0])
sumZZcs = np.array([[0.0, 0.0], [0.0, 0.0]])
flread.seek(0)
for line in flread:
val_list = line.split()
par = float(val_list[0])
Zmd = float(val_list[col_num])
Zphi = float(val_list[col_num+1])
if (Zphi >= -math.pi):
Zcos = Zmd * math.cos(Zphi)
Zsin = Zmd * math.sin(Zphi)
ZZ = np.array([Zcos, Zsin])
npar_all += 1
if par != par_old:
if (npar_all > 1):
avZcs, CCZcs = avr_CC_cal(sumZcs, sumZZcs, nparZ)
# print 'avZcs=', avZcs[0], avZcs[1]
# print 'CCZcs=', CCZcs[0,0], CCZcs[0,1], CCZcs[1,0], CCZcs[1,1]
avZmd = math.sqrt(avZcs[0] * avZcs[0] + avZcs[1] * avZcs[1])
avZphi = math.atan2(avZcs[1], avZcs[0])
sigmd, sigphi = compute_error_bars_md_phi(avZcs, CCZcs, \
avZmd)
flwritea.write('{0:g} {1:g} {2:g}\n'.format( \
par_old * factor, avZmd, sigmd))
flwriteb.write('{0:g} {1:g} {2:g}\n'.format( \
par_old * factor, avZphi, sigphi))
nparZ = 1
sumZcs = ZZ
sumZZcs = np.array([[ZZ[0] * ZZ[0], ZZ[0] * ZZ[1]], \
[ZZ[1] * ZZ[0], ZZ[1] * ZZ[1]]])
par_old = par
else:
nparZ += 1
sumZcs += ZZ
sumZZcs += np.array([[ZZ[0] * ZZ[0], ZZ[0] * ZZ[1]], \
[ZZ[1] * ZZ[0], ZZ[1] * ZZ[1]]])
if (npar_all > 0):
avZcs, CCZcs = avr_CC_cal(sumZcs, sumZZcs, nparZ)
avZmd = math.sqrt(avZcs[0] * avZcs[0] + avZcs[1] * avZcs[1])
avZphi = math.atan2(avZcs[1], avZcs[0])
sigmd, sigphi = compute_error_bars_md_phi(avZcs, CCZcs, avZmd)
flwritea.write('{0:g} {1:g} {2:g}\n'.format(par_old * factor, avZmd, \
sigmd))
flwriteb.write('{0:g} {1:g} {2:g}\n'.format(par_old * factor, avZphi, \
sigphi))
# avZcos, sigZcos = avr_sd_cal(sumZcos, sumZcossq, nparZ)
# avZsin, sigZsin = avr_sd_cal(sumZsin, sumZsinsq, nparZ)
# avZmd = math.sqrt(avZcos * avZcos + avZsin * avZsin)
# avZphi = math.atan2(avZsin, avZcos)
# flwritea.write('{0:g} {1:g} 0.1\n'.format(par_old, avZmd))
# flwriteb.write('{0:g} {1:g} 0.1\n'.format(par_old, avZphi))
#---------------------
#---------------------
#main
suffix = str(sys.argv[1])
factor = float(sys.argv[2])
print suffix, factor
favr = open('tc.avr.' + suffix, 'r')
fsfr = open('mps.sfr.' + suffix, 'w')
fscv = open('mps.scv.' + suffix, 'w')
fsmd = open('mps.smd.' + suffix, 'w')
fsph = open('mps.sph.' + suffix, 'w')
fsch = open('mps.sch.' + suffix, 'w')
Nval_before = 3
one_column_calculate_statistics(favr, fsfr, Nval_before)
fsfr.write(' \n')
Nval_before = 4
one_column_calculate_statistics(favr, fscv, Nval_before)
fscv.write(' \n')
Nval_before = 6
two_column_calculate_statistics(favr, fsmd, fsph, Nval_before)
fsmd.write(' \n')
fsph.write(' \n')
Nval_before = 8
one_column_calculate_statistics(favr, fsfr, Nval_before)
fsfr.write(' \n')
Nval_before = 9
one_column_calculate_statistics(favr, fscv, Nval_before)
fscv.write(' \n')
Nval_before = 11
two_column_calculate_statistics(favr, fsmd, fsph, Nval_before)
fsmd.write(' \n')
fsph.write(' \n')
chi_cal = 1
if chi_cal == 1:
Nval_before = 13
one_column_calculate_statistics(favr, fsch, Nval_before)
fsch.write(' \n')
Nval_before = 13 + chi_cal
one_column_calculate_statistics(favr, fsfr, Nval_before)
fsfr.write(' \n')
Nval_before = 14 + chi_cal
one_column_calculate_statistics(favr, fscv, Nval_before)
Nval_before = 16 + chi_cal
two_column_calculate_statistics(favr, fsmd, fsph, Nval_before)
if chi_cal == 1:
Nval_before = 18 + chi_cal
one_column_calculate_statistics(favr, fsch, Nval_before)
fsch.write(' \n')
fsfr.write(' \n')
Nval_before = 19 + chi_cal
one_column_calculate_statistics(favr, fsfr, Nval_before)
fsfr.write(' \n')
Nval_before = 20 + chi_cal
one_column_calculate_statistics(favr, fsfr, Nval_before)
fsfr.write(' \n')
favr.close()
fsfr.close()
fscv.close()
fsmd.close()
fsph.close()
fsch.close()