COMMENT
T-type Ca2+ channel
large scaled Morkov model for T-type ca2+ current
C0<->C1<->C2<->C3<->C4<->O
I0<->I1<->I2<->I3<->I4<->Io
C0<->I0,C1<->I1,C2<->I2,C3<->I4,O<->Io
Reference:
Serrano JR, Perez-Reyes E,& Jones SW, 1999, J Gen Physiol
Written by:
Yuki HAYASHIDA, 2001 Sep-Oct
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ca12dZUy
USEION ca READ cai, cao WRITE ica
RANGE C0, C1, C2, C3, C4, O, I0, I1, I2, I3, I4, Io
RANGE kv, kv0, k_v, k_v0, ko, k_o, ki, k_i
RANGE f, h, p
RANGE vkv, vk_v
GLOBAL vmin, vmax, vshift
}
UNITS {
F = (faraday) (coulomb)
R = (k-mole) (joule/degC)
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
(mM) = (milli/liter)
}
PARAMETER {
p = 7e-6 (cm/s) : max permeability
v (mV)
: max rates
kv0 = 3.7 (/ms)
k_v0 = 18e-3 (/ms)
ko = 20 (/ms)
k_o = 1.65 (/ms)
ki = 62e-3 (/ms)
k_i = 0.13e-3 (/ms)
f = 0.224
h = 0.125
: voltage dependence
vkv = 25.5 (mV)
vk_v = -15.3 (mV)
vshift = 0 (mV)
celsius (degC)
vmin = -200 (mV)
vmax = 200 (mV)
}
ASSIGNED {
ica (mA/cm2)
cao (mM)
cai (mM)
kv (1/ms)
k_v (1/ms)
}
STATE { C0 C1 C2 C3 C4 O I0 I1 I2 I3 I4 Io }
INITIAL {
:at Vh=-62mV
C0 = 0.0076057097
C1 = 0.0095551048
C2 = 0.0045015537
C3 = 0.00094255543
C4 = 7.4008676e-05
O = 0.00089707485
I0 = 7.9627334e-05
I1 = 0.0035727272
I2 = 0.060113056
I3 = 0.44952644
I4 = 0.035296445
Io = (1-C0-C1-C2-C3-C4-O-I0-I1-I2-I3-I4)
}
BREAKPOINT {
rates(v)
SOLVE kstates METHOD sparse
ica = O * p * ghk(v,cai,cao)
}
KINETIC kstates {
~ C0 <-> C1 (4*kv,k_v)
~ C1 <-> C2 (3*kv,2*k_v)
~ C2 <-> C3 (2*kv,3*k_v)
~ C3 <-> C4 (kv,4*k_v)
~ C4 <-> O (ko,k_o)
~ I0 <-> I1 (4*kv/f,h*k_v)
~ I1 <-> I2 (3*kv/f,2*h*k_v)
~ I2 <-> I3 (2*kv/f,3*h*k_v)
~ I3 <-> I4 (kv,4*k_v)
~ I4 <-> Io (ko,k_o)
~ C0 <-> I0 (f*f*f*ki,k_i/h/h/h)
~ C1 <-> I1 (f*f*ki,k_i/h/h)
~ C2 <-> I2 (f*ki,k_i/h)
~ C3 <-> I3 (ki,k_i)
~ C4 <-> I4 (ki,k_i)
~ O <-> Io (ki,k_i)
CONSERVE C0+C1+C2+C3+C4+O+I0+I1+I2+I3+I4+Io = 1
}
PROCEDURE rates(v(mV)) {
TABLE kv, k_v
DEPEND kv0, k_v0, vkv, vk_v
FROM vmin TO vmax WITH 401
kv = kv0 * exp((v-vshift)/vkv)
k_v = k_v0 * exp((v-vshift)/vk_v)
}
: Special gear for calculating the Ca2+ reversal potential
: via Goldman-Hodgkin-Katz eqn.
: [Ca2+]o "cao" and [Ca2+]i "cai" are assumed to be set elsewhere
FUNCTION ghk(v(mV), ci(mM), co(mM)) (0.001 coul/cm3) {
LOCAL z
z = (0.001)*2*F*v/(R*(celsius+273.15))
ghk = (0.001)*2*F*(ci*efun(-z) - co*efun(z))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}