TITLE Calcium dynamics for N, P/Q, R calcium pool
NEURON {
SUFFIX cadyn_ms
USEION ca READ ica, cai WRITE cai VALENCE 2
RANGE pump, cainf, taur, drive, depth
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
(msM) = (ms mM)
FARADAY = (faraday) (coulomb)
}
PARAMETER {
drive = 10000 (1)
depth = 0.2 (um)
cainf = 70e-6 (mM)
taur = 43 (ms)
kt = 1e-4 (mM/ms)
kd = 1e-4 (mM)
pump = 0.02
}
STATE { cai (mM) }
INITIAL { cai = cainf }
ASSIGNED {
ica (mA/cm2)
drive_channel (mM/ms)
drive_pump (mM/ms)
}
BREAKPOINT {
SOLVE state METHOD cnexp
}
DERIVATIVE state {
: force concentration to stay above cainf by only pumping if larger
drive_channel = -drive*ica/(2*FARADAY*depth)
drive_pump = -kt*(cai-cainf)/(cai+kd)
if (drive_channel <= 0.) { drive_channel = 0. }
cai' = drive_channel + pump*drive_pump + (cainf-cai)/taur
}
COMMENT
Original NEURON model by Wolf (2005) and Destexhe (1992). Adaptation by
Alexander Kozlov <akozlov@kth.se>. Updated by Robert Lindroos <robert.lindroos@ki.se>.
Updates by RL:
-cainf changed from 10 to 70 nM (sabatini et al., 2002 The Life Cycle of Ca 2+ Ions in Dendritic Spines)
-pump updated to only be active if cai > cainf
[1] Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M,
O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions
and entrainment to oscillations in a computational model of the nucleus
accumbens medium spiny projection neuron. J Neurosci 25(40):9080-95.
ENDCOMMENT