TITLE Cerebellum Granule Cell Model, KCa channel
COMMENT
Reference: E.D'Angelo, T.Nieus, A. Maffei, S. Armano, P. Rossi,
V. Taglietti, A. Fontana, G. Naldi "Theta-frequency bursting and
resonance in cerebellar granule cells: experimental evidence and
modeling of a slow K+-dependent mechanism", J. neurosci., 2001,
21,P. 759-770.
ENDCOMMENT
NEURON {
SUFFIX GrC_KCa
USEION k READ ek WRITE ik
USEION ca READ cai
RANGE gkbar, ik, ica, g, alpha_c, beta_c
RANGE Aalpha_c, Balpha_c, Kalpha_c
RANGE Abeta_c, Bbeta_c, Kbeta_c
RANGE c_inf, tau_c
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
Aalpha_c = 2.5 (/ms)
Balpha_c = 1.5e-3 (mM)
Kalpha_c = -11.765 (mV)
Abeta_c = 1.5 (/ms)
Bbeta_c = 0.15e-3 (mM)
Kbeta_c = -11.765 (mV)
gkbar= 0.004 (mho/cm2)
}
STATE {
c
}
ASSIGNED {
ik (mA/cm2)
ica (mA/cm2)
c_inf
tau_c (ms)
g (mho/cm2)
alpha_c (/ms)
beta_c (/ms)
ek (mV)
celsius (degC)
v (mV)
cai (mM)
}
INITIAL {
rate(v)
c = c_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gkbar*c
ik = g*(v - ek)
alpha_c = alp_c(v)
beta_c = bet_c(v)
}
DERIVATIVE states {
rate(v)
c' =(c_inf - c)/tau_c
}
FUNCTION alp_c(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-30(degC))/10(degC))
if(v/Kalpha_c>200){
alp_c = Q10*Aalpha_c/(1+(Balpha_c*exp(200)/cai))
}else{
alp_c = Q10*Aalpha_c/(1+(Balpha_c*exp(v/Kalpha_c)/cai))
}
}
FUNCTION bet_c(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-30(degC))/10(degC))
if(v/Kbeta_c>200){
bet_c = Q10*Abeta_c/(1+cai/(Bbeta_c*exp(200)))
}else{
bet_c = Q10*Abeta_c/(1+cai/(Bbeta_c*exp(v/Kbeta_c)))
}
}
PROCEDURE rate(v (mV)) {LOCAL a_c, b_c
a_c = alp_c(v)
b_c = bet_c(v)
tau_c = 1/(a_c + b_c)
c_inf = a_c/(a_c + b_c)
}