TITLE Cerebellum Granule Cell Model, pNa channel
COMMENT
Reference: E.D'Angelo, T.Nieus, A. Maffei, S. Armano, P. Rossi,
V. Taglietti, A. Fontana, G. Naldi "Theta-frequency bursting and
resonance in cerebellar granule cells: experimental evidence and
modeling of a slow K+-dependent mechanism", J. neurosci., 2001,
21,P. 759-770.
ENDCOMMENT
NEURON {
SUFFIX GrC_pNa
USEION na READ ena WRITE ina
RANGE gnabar, ina, g, alpha_m, beta_m
RANGE Aalpha_m, Kalpha_m, V0alpha_m
RANGE Abeta_m, Kbeta_m, V0beta_m
RANGE V0_minf, B_minf
RANGE m_inf, tau_m
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
Aalpha_m = -0.091 (/mV-ms)
Kalpha_m = -5 (mV)
V0alpha_m = -42 (mV)
Abeta_m = 0.062 (/mV-ms)
Kbeta_m = 5 (mV)
V0beta_m = -42 (mV)
V0_minf = -42 (mV)
B_minf = 5 (mV)
gnabar= 2e-5 (mho/cm2)
}
STATE {
m
}
ASSIGNED {
ina (mA/cm2)
m_inf
tau_m (ms)
g (mho/cm2)
alpha_m (/ms)
beta_m (/ms)
ena (mV)
celsius (degC)
v (mV)
}
INITIAL {
rate(v)
m = m_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gnabar*m
ina = g*(v - ena)
alpha_m = alp_m(v)
beta_m = bet_m(v)
}
DERIVATIVE states {
rate(v)
m' =(m_inf - m)/tau_m
}
FUNCTION alp_m(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-30(degC))/10(degC))
alp_m = Q10 * Aalpha_m*linoid(v-V0alpha_m, Kalpha_m)
}
FUNCTION bet_m(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-30(degC))/10(degC))
bet_m = Q10 * Abeta_m*linoid(v-V0beta_m, Kbeta_m)
}
PROCEDURE rate(v (mV)) {LOCAL a_m, b_m
TABLE m_inf, tau_m
DEPEND Aalpha_m, Kalpha_m, V0alpha_m,
Abeta_m, Kbeta_m, V0beta_m, celsius FROM -100 TO 100 WITH 200
a_m = alp_m(v)
b_m = bet_m(v)
if((-(v-V0_minf)/B_minf)>200){
m_inf = 1/(1+exp(200))
}else{
m_inf = 1/(1+exp(-(v-V0_minf)/B_minf))
}
tau_m = 5/(a_m + b_m)
}
FUNCTION linoid(x (mV),y (mV)) (mV) {
if (fabs(x/y) < 1e-6) {
linoid = y*(1 - x/y/2)
}else{
if(x/y>200){
linoid = x/(exp(200) - 1)
}else{
linoid = x/(exp(x/y) - 1)
}
}
}