TITLE Cerebellum Granule Cell Model, KDr channel
COMMENT
Reference: E.D'Angelo, T.Nieus, A. Maffei, S. Armano, P. Rossi,
V. Taglietti, A. Fontana, G. Naldi "Theta-frequency bursting and
resonance in cerebellar granule cells: experimental evidence and
modeling of a slow K+-dependent mechanism", J. neurosci., 2001,
21,P. 759-770.
ENDCOMMENT
NEURON {
SUFFIX GrG_KV
USEION k READ ek WRITE ik
RANGE gkbar, ik, g, alpha_n, beta_n
RANGE Aalpha_n, Kalpha_n, V0alpha_n
RANGE Abeta_n, Kbeta_n, V0beta_n
RANGE n_inf, tau_n
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
Aalpha_n = -0.01 (/ms-mV)
Kalpha_n = -10 (mV)
V0alpha_n = -25 (mV)
Abeta_n = 0.125 (/ms)
Kbeta_n = -80 (mV)
V0beta_n = -35 (mV)
gkbar= 0.003 (mho/cm2)
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
n_inf
tau_n (ms)
g (mho/cm2)
alpha_n (/ms)
beta_n (/ms)
ek(mV)
celsius (degC)
v (mV)
}
INITIAL {
rate(v)
n = n_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gkbar*n*n*n*n
ik = g*(v - ek)
alpha_n = alp_n(v)
beta_n = bet_n(v)
}
DERIVATIVE states {
rate(v)
n' =(n_inf - n)/tau_n
}
FUNCTION alp_n(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-6.3(degC))/10(degC))
alp_n = Q10*Aalpha_n*linoid(v-V0alpha_n, Kalpha_n)
}
FUNCTION bet_n(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-6.3(degC))/10(degC))
if((v-V0beta_n)/Kbeta_n>200){
bet_n = Q10*Abeta_n*exp(200)
}else{
bet_n = Q10*Abeta_n*exp((v-V0beta_n)/Kbeta_n)
}
}
PROCEDURE rate(v (mV)) {LOCAL a_n, b_n
TABLE n_inf, tau_n
DEPEND Aalpha_n, Kalpha_n, V0alpha_n,
Abeta_n, Kbeta_n, V0beta_n, celsius FROM -100 TO 100 WITH 200
a_n = alp_n(v)
b_n = bet_n(v)
tau_n = 1/(a_n + b_n)
n_inf = a_n/(a_n + b_n)
}
FUNCTION linoid(x (mV),y (mV)) (mV) {
if (fabs(x/y) < 1e-6) {
linoid = y*(1 - x/y/2)
}else{
if(x/y>200){
linoid = x/(exp(200) - 1)
}else{
linoid = x/(exp(x/y) - 1)
}
}
}