% Tue Mar 24 14:41:25 2015 % Input layer: (9, 9) % Output layer: (1, 81) % Fanout size: (1, 4) % Fanout spacing: (1, 1) % Specified fanout weights Connect(estg, ea2c) { From: (1, 1) { ([ 1,80] 0.000692) ([ 1,81] 0.001029) ([ 1, 1] 0.001812) ([ 1, 2] 0.000681) } From: (1, 2) { ([ 1,81] 0.001620) ([ 1, 1] 0.000727) ([ 1, 2] 0.001490) ([ 1, 3] 0.000726) } From: (1, 3) { ([ 1, 1] 0.001725) ([ 1, 2] 0.001155) ([ 1, 3] 0.000680) ([ 1, 4] 0.001563) } From: (1, 4) { ([ 1, 2] 0.001601) ([ 1, 3] 0.000848) ([ 1, 4] 0.001654) ([ 1, 5] 0.001294) } From: (1, 5) { ([ 1, 3] 0.000979) ([ 1, 4] 0.001559) ([ 1, 5] 0.001535) ([ 1, 6] 0.001819) } From: (1, 6) { ([ 1, 4] 0.000781) ([ 1, 5] 0.001039) ([ 1, 6] 0.001062) ([ 1, 7] 0.000810) } From: (1, 7) { ([ 1, 5] 0.001397) ([ 1, 6] 0.001328) ([ 1, 7] 0.000811) ([ 1, 8] 0.001072) } From: (1, 8) { ([ 1, 6] 0.000762) ([ 1, 7] 0.001272) ([ 1, 8] 0.001339) ([ 1, 9] 0.001339) } From: (1, 9) { ([ 1, 7] 0.001448) ([ 1, 8] 0.001661) ([ 1, 9] 0.001245) ([ 1,10] 0.000772) } From: (2, 1) { ([ 1, 8] 0.001259) ([ 1, 9] 0.001276) ([ 1,10] 0.001576) ([ 1,11] 0.001323) } From: (2, 2) { ([ 1, 9] 0.000937) ([ 1,10] 0.001438) ([ 1,11] 0.000764) ([ 1,12] 0.001581) } From: (2, 3) { ([ 1,10] 0.000887) ([ 1,11] 0.001042) ([ 1,12] 0.001025) ([ 1,13] 0.000878) } From: (2, 4) { ([ 1,11] 0.000688) ([ 1,12] 0.001063) ([ 1,13] 0.000770) ([ 1,14] 0.001214) } From: (2, 5) { ([ 1,12] 0.000882) ([ 1,13] 0.000737) ([ 1,14] 0.001787) ([ 1,15] 0.001735) } From: (2, 6) { ([ 1,13] 0.001088) ([ 1,14] 0.001138) ([ 1,15] 0.001080) ([ 1,16] 0.000989) } From: (2, 7) { ([ 1,14] 0.001292) ([ 1,15] 0.001158) ([ 1,16] 0.001697) ([ 1,17] 0.001833) } From: (2, 8) { ([ 1,15] 0.001184) ([ 1,16] 0.000858) ([ 1,17] 0.000695) ([ 1,18] 0.000827) } From: (2, 9) { ([ 1,16] 0.001086) ([ 1,17] 0.001367) ([ 1,18] 0.001536) ([ 1,19] 0.001655) } From: (3, 1) { ([ 1,17] 0.001534) ([ 1,18] 0.001306) ([ 1,19] 0.001054) ([ 1,20] 0.001181) } From: (3, 2) { ([ 1,18] 0.000709) ([ 1,19] 0.001215) ([ 1,20] 0.001782) ([ 1,21] 0.001323) } From: (3, 3) { ([ 1,19] 0.001091) ([ 1,20] 0.001126) ([ 1,21] 0.001557) ([ 1,22] 0.001829) } From: (3, 4) { ([ 1,20] 0.001152) ([ 1,21] 0.001207) ([ 1,22] 0.001612) ([ 1,23] 0.001359) } From: (3, 5) { ([ 1,21] 0.001527) ([ 1,22] 0.001154) ([ 1,23] 0.001408) ([ 1,24] 0.000991) } From: (3, 6) { ([ 1,22] 0.001045) ([ 1,23] 0.000825) ([ 1,24] 0.001183) ([ 1,25] 0.001099) } From: (3, 7) { ([ 1,23] 0.001471) ([ 1,24] 0.001292) ([ 1,25] 0.001757) ([ 1,26] 0.000928) } From: (3, 8) { ([ 1,24] 0.000847) ([ 1,25] 0.001537) ([ 1,26] 0.001299) ([ 1,27] 0.001089) } From: (3, 9) { ([ 1,25] 0.000673) ([ 1,26] 0.000790) ([ 1,27] 0.001203) ([ 1,28] 0.001277) } From: (4, 1) { ([ 1,26] 0.000653) ([ 1,27] 0.001832) ([ 1,28] 0.000888) ([ 1,29] 0.001648) } From: (4, 2) { ([ 1,27] 0.000774) ([ 1,28] 0.001435) ([ 1,29] 0.000817) ([ 1,30] 0.001276) } From: (4, 3) { ([ 1,28] 0.001268) ([ 1,29] 0.000705) ([ 1,30] 0.001400) ([ 1,31] 0.000913) } From: (4, 4) { ([ 1,29] 0.001672) ([ 1,30] 0.001415) ([ 1,31] 0.001578) ([ 1,32] 0.001126) } From: (4, 5) { ([ 1,30] 0.001700) ([ 1,31] 0.001114) ([ 1,32] 0.001156) ([ 1,33] 0.000767) } From: (4, 6) { ([ 1,31] 0.001187) ([ 1,32] 0.001534) ([ 1,33] 0.001351) ([ 1,34] 0.001461) } From: (4, 7) { ([ 1,32] 0.000890) ([ 1,33] 0.001657) ([ 1,34] 0.001342) ([ 1,35] 0.001755) } From: (4, 8) { ([ 1,33] 0.001209) ([ 1,34] 0.001372) ([ 1,35] 0.001316) ([ 1,36] 0.001365) } From: (4, 9) { ([ 1,34] 0.001049) ([ 1,35] 0.000979) ([ 1,36] 0.001293) ([ 1,37] 0.000797) } From: (5, 1) { ([ 1,35] 0.001024) ([ 1,36] 0.001654) ([ 1,37] 0.000777) ([ 1,38] 0.001698) } From: (5, 2) { ([ 1,36] 0.001822) ([ 1,37] 0.001354) ([ 1,38] 0.001761) ([ 1,39] 0.000991) } From: (5, 3) { ([ 1,37] 0.000807) ([ 1,38] 0.001822) ([ 1,39] 0.001646) ([ 1,40] 0.001592) } From: (5, 4) { ([ 1,38] 0.001236) ([ 1,39] 0.001758) ([ 1,40] 0.001598) ([ 1,41] 0.001129) } From: (5, 5) { ([ 1,39] 0.001382) ([ 1,40] 0.001277) ([ 1,41] 0.000955) ([ 1,42] 0.001449) } From: (5, 6) { ([ 1,40] 0.001664) ([ 1,41] 0.001080) ([ 1,42] 0.001164) ([ 1,43] 0.001211) } From: (5, 7) { ([ 1,41] 0.001029) ([ 1,42] 0.001078) ([ 1,43] 0.001666) ([ 1,44] 0.000930) } From: (5, 8) { ([ 1,42] 0.001356) ([ 1,43] 0.001182) ([ 1,44] 0.000888) ([ 1,45] 0.001779) } From: (5, 9) { ([ 1,43] 0.001245) ([ 1,44] 0.000779) ([ 1,45] 0.001552) ([ 1,46] 0.001053) } From: (6, 1) { ([ 1,44] 0.001571) ([ 1,45] 0.001049) ([ 1,46] 0.001676) ([ 1,47] 0.001558) } From: (6, 2) { ([ 1,45] 0.001237) ([ 1,46] 0.000973) ([ 1,47] 0.001803) ([ 1,48] 0.000690) } From: (6, 3) { ([ 1,46] 0.000857) ([ 1,47] 0.001159) ([ 1,48] 0.001014) ([ 1,49] 0.001827) } From: (6, 4) { ([ 1,47] 0.000846) ([ 1,48] 0.000840) ([ 1,49] 0.001741) ([ 1,50] 0.000781) } From: (6, 5) { ([ 1,48] 0.001123) ([ 1,49] 0.001496) ([ 1,50] 0.001660) ([ 1,51] 0.001015) } From: (6, 6) { ([ 1,49] 0.000702) ([ 1,50] 0.000666) ([ 1,51] 0.001498) ([ 1,52] 0.001156) } From: (6, 7) { ([ 1,50] 0.001234) ([ 1,51] 0.000938) ([ 1,52] 0.000945) ([ 1,53] 0.001722) } From: (6, 8) { ([ 1,51] 0.000681) ([ 1,52] 0.001608) ([ 1,53] 0.001229) ([ 1,54] 0.001496) } From: (6, 9) { ([ 1,52] 0.000994) ([ 1,53] 0.001262) ([ 1,54] 0.001021) ([ 1,55] 0.001080) } From: (7, 1) { ([ 1,53] 0.001677) ([ 1,54] 0.001304) ([ 1,55] 0.001328) ([ 1,56] 0.001488) } From: (7, 2) { ([ 1,54] 0.001428) ([ 1,55] 0.001266) ([ 1,56] 0.001435) ([ 1,57] 0.001656) } From: (7, 3) { ([ 1,55] 0.001577) ([ 1,56] 0.000991) ([ 1,57] 0.001212) ([ 1,58] 0.001547) } From: (7, 4) { ([ 1,56] 0.000834) ([ 1,57] 0.001678) ([ 1,58] 0.001790) ([ 1,59] 0.001194) } From: (7, 5) { ([ 1,57] 0.001816) ([ 1,58] 0.001712) ([ 1,59] 0.001745) ([ 1,60] 0.000936) } From: (7, 6) { ([ 1,58] 0.000731) ([ 1,59] 0.000940) ([ 1,60] 0.001673) ([ 1,61] 0.001409) } From: (7, 7) { ([ 1,59] 0.001623) ([ 1,60] 0.001103) ([ 1,61] 0.001061) ([ 1,62] 0.001261) } From: (7, 8) { ([ 1,60] 0.001347) ([ 1,61] 0.000733) ([ 1,62] 0.000987) ([ 1,63] 0.000740) } From: (7, 9) { ([ 1,61] 0.001749) ([ 1,62] 0.001330) ([ 1,63] 0.001459) ([ 1,64] 0.000777) } From: (8, 1) { ([ 1,62] 0.001396) ([ 1,63] 0.000747) ([ 1,64] 0.001708) ([ 1,65] 0.001052) } From: (8, 2) { ([ 1,63] 0.001345) ([ 1,64] 0.000651) ([ 1,65] 0.000938) ([ 1,66] 0.001270) } From: (8, 3) { ([ 1,64] 0.001580) ([ 1,65] 0.000938) ([ 1,66] 0.001560) ([ 1,67] 0.001013) } From: (8, 4) { ([ 1,65] 0.000819) ([ 1,66] 0.001400) ([ 1,67] 0.000837) ([ 1,68] 0.001570) } From: (8, 5) { ([ 1,66] 0.000754) ([ 1,67] 0.001001) ([ 1,68] 0.001659) ([ 1,69] 0.000728) } From: (8, 6) { ([ 1,67] 0.000937) ([ 1,68] 0.001454) ([ 1,69] 0.001342) ([ 1,70] 0.001243) } From: (8, 7) { ([ 1,68] 0.001614) ([ 1,69] 0.001482) ([ 1,70] 0.001209) ([ 1,71] 0.001755) } From: (8, 8) { ([ 1,69] 0.000766) ([ 1,70] 0.001379) ([ 1,71] 0.001344) ([ 1,72] 0.001123) } From: (8, 9) { ([ 1,70] 0.001027) ([ 1,71] 0.001668) ([ 1,72] 0.000698) ([ 1,73] 0.001291) } From: (9, 1) { ([ 1,71] 0.000959) ([ 1,72] 0.000917) ([ 1,73] 0.001387) ([ 1,74] 0.000839) } From: (9, 2) { ([ 1,72] 0.001661) ([ 1,73] 0.001677) ([ 1,74] 0.001687) ([ 1,75] 0.001250) } From: (9, 3) { ([ 1,73] 0.001167) ([ 1,74] 0.000812) ([ 1,75] 0.001607) ([ 1,76] 0.000983) } From: (9, 4) { ([ 1,74] 0.001456) ([ 1,75] 0.000884) ([ 1,76] 0.001221) ([ 1,77] 0.001617) } From: (9, 5) { ([ 1,75] 0.001072) ([ 1,76] 0.001040) ([ 1,77] 0.001201) ([ 1,78] 0.001082) } From: (9, 6) { ([ 1,76] 0.001765) ([ 1,77] 0.000703) ([ 1,78] 0.000782) ([ 1,79] 0.001801) } From: (9, 7) { ([ 1,77] 0.001633) ([ 1,78] 0.001234) ([ 1,79] 0.001509) ([ 1,80] 0.001633) } From: (9, 8) { ([ 1,78] 0.000928) ([ 1,79] 0.000869) ([ 1,80] 0.000789) ([ 1,81] 0.001582) } From: (9, 9) { ([ 1,79] 0.001039) ([ 1,80] 0.000970) ([ 1,81] 0.000667) ([ 1, 1] 0.000741) } }