% Tue Mar 24 14:41:25 2015
% Input layer: (9, 9)
% Output layer: (1, 81)
% Fanout size: (1, 4)
% Fanout spacing: (1, 1)
% Specified fanout weights
Connect(estg, ea2c) {
From: (1, 1) {
([ 1,80] 0.000692) ([ 1,81] 0.001029) ([ 1, 1] 0.001812) ([ 1, 2] 0.000681)
}
From: (1, 2) {
([ 1,81] 0.001620) ([ 1, 1] 0.000727) ([ 1, 2] 0.001490) ([ 1, 3] 0.000726)
}
From: (1, 3) {
([ 1, 1] 0.001725) ([ 1, 2] 0.001155) ([ 1, 3] 0.000680) ([ 1, 4] 0.001563)
}
From: (1, 4) {
([ 1, 2] 0.001601) ([ 1, 3] 0.000848) ([ 1, 4] 0.001654) ([ 1, 5] 0.001294)
}
From: (1, 5) {
([ 1, 3] 0.000979) ([ 1, 4] 0.001559) ([ 1, 5] 0.001535) ([ 1, 6] 0.001819)
}
From: (1, 6) {
([ 1, 4] 0.000781) ([ 1, 5] 0.001039) ([ 1, 6] 0.001062) ([ 1, 7] 0.000810)
}
From: (1, 7) {
([ 1, 5] 0.001397) ([ 1, 6] 0.001328) ([ 1, 7] 0.000811) ([ 1, 8] 0.001072)
}
From: (1, 8) {
([ 1, 6] 0.000762) ([ 1, 7] 0.001272) ([ 1, 8] 0.001339) ([ 1, 9] 0.001339)
}
From: (1, 9) {
([ 1, 7] 0.001448) ([ 1, 8] 0.001661) ([ 1, 9] 0.001245) ([ 1,10] 0.000772)
}
From: (2, 1) {
([ 1, 8] 0.001259) ([ 1, 9] 0.001276) ([ 1,10] 0.001576) ([ 1,11] 0.001323)
}
From: (2, 2) {
([ 1, 9] 0.000937) ([ 1,10] 0.001438) ([ 1,11] 0.000764) ([ 1,12] 0.001581)
}
From: (2, 3) {
([ 1,10] 0.000887) ([ 1,11] 0.001042) ([ 1,12] 0.001025) ([ 1,13] 0.000878)
}
From: (2, 4) {
([ 1,11] 0.000688) ([ 1,12] 0.001063) ([ 1,13] 0.000770) ([ 1,14] 0.001214)
}
From: (2, 5) {
([ 1,12] 0.000882) ([ 1,13] 0.000737) ([ 1,14] 0.001787) ([ 1,15] 0.001735)
}
From: (2, 6) {
([ 1,13] 0.001088) ([ 1,14] 0.001138) ([ 1,15] 0.001080) ([ 1,16] 0.000989)
}
From: (2, 7) {
([ 1,14] 0.001292) ([ 1,15] 0.001158) ([ 1,16] 0.001697) ([ 1,17] 0.001833)
}
From: (2, 8) {
([ 1,15] 0.001184) ([ 1,16] 0.000858) ([ 1,17] 0.000695) ([ 1,18] 0.000827)
}
From: (2, 9) {
([ 1,16] 0.001086) ([ 1,17] 0.001367) ([ 1,18] 0.001536) ([ 1,19] 0.001655)
}
From: (3, 1) {
([ 1,17] 0.001534) ([ 1,18] 0.001306) ([ 1,19] 0.001054) ([ 1,20] 0.001181)
}
From: (3, 2) {
([ 1,18] 0.000709) ([ 1,19] 0.001215) ([ 1,20] 0.001782) ([ 1,21] 0.001323)
}
From: (3, 3) {
([ 1,19] 0.001091) ([ 1,20] 0.001126) ([ 1,21] 0.001557) ([ 1,22] 0.001829)
}
From: (3, 4) {
([ 1,20] 0.001152) ([ 1,21] 0.001207) ([ 1,22] 0.001612) ([ 1,23] 0.001359)
}
From: (3, 5) {
([ 1,21] 0.001527) ([ 1,22] 0.001154) ([ 1,23] 0.001408) ([ 1,24] 0.000991)
}
From: (3, 6) {
([ 1,22] 0.001045) ([ 1,23] 0.000825) ([ 1,24] 0.001183) ([ 1,25] 0.001099)
}
From: (3, 7) {
([ 1,23] 0.001471) ([ 1,24] 0.001292) ([ 1,25] 0.001757) ([ 1,26] 0.000928)
}
From: (3, 8) {
([ 1,24] 0.000847) ([ 1,25] 0.001537) ([ 1,26] 0.001299) ([ 1,27] 0.001089)
}
From: (3, 9) {
([ 1,25] 0.000673) ([ 1,26] 0.000790) ([ 1,27] 0.001203) ([ 1,28] 0.001277)
}
From: (4, 1) {
([ 1,26] 0.000653) ([ 1,27] 0.001832) ([ 1,28] 0.000888) ([ 1,29] 0.001648)
}
From: (4, 2) {
([ 1,27] 0.000774) ([ 1,28] 0.001435) ([ 1,29] 0.000817) ([ 1,30] 0.001276)
}
From: (4, 3) {
([ 1,28] 0.001268) ([ 1,29] 0.000705) ([ 1,30] 0.001400) ([ 1,31] 0.000913)
}
From: (4, 4) {
([ 1,29] 0.001672) ([ 1,30] 0.001415) ([ 1,31] 0.001578) ([ 1,32] 0.001126)
}
From: (4, 5) {
([ 1,30] 0.001700) ([ 1,31] 0.001114) ([ 1,32] 0.001156) ([ 1,33] 0.000767)
}
From: (4, 6) {
([ 1,31] 0.001187) ([ 1,32] 0.001534) ([ 1,33] 0.001351) ([ 1,34] 0.001461)
}
From: (4, 7) {
([ 1,32] 0.000890) ([ 1,33] 0.001657) ([ 1,34] 0.001342) ([ 1,35] 0.001755)
}
From: (4, 8) {
([ 1,33] 0.001209) ([ 1,34] 0.001372) ([ 1,35] 0.001316) ([ 1,36] 0.001365)
}
From: (4, 9) {
([ 1,34] 0.001049) ([ 1,35] 0.000979) ([ 1,36] 0.001293) ([ 1,37] 0.000797)
}
From: (5, 1) {
([ 1,35] 0.001024) ([ 1,36] 0.001654) ([ 1,37] 0.000777) ([ 1,38] 0.001698)
}
From: (5, 2) {
([ 1,36] 0.001822) ([ 1,37] 0.001354) ([ 1,38] 0.001761) ([ 1,39] 0.000991)
}
From: (5, 3) {
([ 1,37] 0.000807) ([ 1,38] 0.001822) ([ 1,39] 0.001646) ([ 1,40] 0.001592)
}
From: (5, 4) {
([ 1,38] 0.001236) ([ 1,39] 0.001758) ([ 1,40] 0.001598) ([ 1,41] 0.001129)
}
From: (5, 5) {
([ 1,39] 0.001382) ([ 1,40] 0.001277) ([ 1,41] 0.000955) ([ 1,42] 0.001449)
}
From: (5, 6) {
([ 1,40] 0.001664) ([ 1,41] 0.001080) ([ 1,42] 0.001164) ([ 1,43] 0.001211)
}
From: (5, 7) {
([ 1,41] 0.001029) ([ 1,42] 0.001078) ([ 1,43] 0.001666) ([ 1,44] 0.000930)
}
From: (5, 8) {
([ 1,42] 0.001356) ([ 1,43] 0.001182) ([ 1,44] 0.000888) ([ 1,45] 0.001779)
}
From: (5, 9) {
([ 1,43] 0.001245) ([ 1,44] 0.000779) ([ 1,45] 0.001552) ([ 1,46] 0.001053)
}
From: (6, 1) {
([ 1,44] 0.001571) ([ 1,45] 0.001049) ([ 1,46] 0.001676) ([ 1,47] 0.001558)
}
From: (6, 2) {
([ 1,45] 0.001237) ([ 1,46] 0.000973) ([ 1,47] 0.001803) ([ 1,48] 0.000690)
}
From: (6, 3) {
([ 1,46] 0.000857) ([ 1,47] 0.001159) ([ 1,48] 0.001014) ([ 1,49] 0.001827)
}
From: (6, 4) {
([ 1,47] 0.000846) ([ 1,48] 0.000840) ([ 1,49] 0.001741) ([ 1,50] 0.000781)
}
From: (6, 5) {
([ 1,48] 0.001123) ([ 1,49] 0.001496) ([ 1,50] 0.001660) ([ 1,51] 0.001015)
}
From: (6, 6) {
([ 1,49] 0.000702) ([ 1,50] 0.000666) ([ 1,51] 0.001498) ([ 1,52] 0.001156)
}
From: (6, 7) {
([ 1,50] 0.001234) ([ 1,51] 0.000938) ([ 1,52] 0.000945) ([ 1,53] 0.001722)
}
From: (6, 8) {
([ 1,51] 0.000681) ([ 1,52] 0.001608) ([ 1,53] 0.001229) ([ 1,54] 0.001496)
}
From: (6, 9) {
([ 1,52] 0.000994) ([ 1,53] 0.001262) ([ 1,54] 0.001021) ([ 1,55] 0.001080)
}
From: (7, 1) {
([ 1,53] 0.001677) ([ 1,54] 0.001304) ([ 1,55] 0.001328) ([ 1,56] 0.001488)
}
From: (7, 2) {
([ 1,54] 0.001428) ([ 1,55] 0.001266) ([ 1,56] 0.001435) ([ 1,57] 0.001656)
}
From: (7, 3) {
([ 1,55] 0.001577) ([ 1,56] 0.000991) ([ 1,57] 0.001212) ([ 1,58] 0.001547)
}
From: (7, 4) {
([ 1,56] 0.000834) ([ 1,57] 0.001678) ([ 1,58] 0.001790) ([ 1,59] 0.001194)
}
From: (7, 5) {
([ 1,57] 0.001816) ([ 1,58] 0.001712) ([ 1,59] 0.001745) ([ 1,60] 0.000936)
}
From: (7, 6) {
([ 1,58] 0.000731) ([ 1,59] 0.000940) ([ 1,60] 0.001673) ([ 1,61] 0.001409)
}
From: (7, 7) {
([ 1,59] 0.001623) ([ 1,60] 0.001103) ([ 1,61] 0.001061) ([ 1,62] 0.001261)
}
From: (7, 8) {
([ 1,60] 0.001347) ([ 1,61] 0.000733) ([ 1,62] 0.000987) ([ 1,63] 0.000740)
}
From: (7, 9) {
([ 1,61] 0.001749) ([ 1,62] 0.001330) ([ 1,63] 0.001459) ([ 1,64] 0.000777)
}
From: (8, 1) {
([ 1,62] 0.001396) ([ 1,63] 0.000747) ([ 1,64] 0.001708) ([ 1,65] 0.001052)
}
From: (8, 2) {
([ 1,63] 0.001345) ([ 1,64] 0.000651) ([ 1,65] 0.000938) ([ 1,66] 0.001270)
}
From: (8, 3) {
([ 1,64] 0.001580) ([ 1,65] 0.000938) ([ 1,66] 0.001560) ([ 1,67] 0.001013)
}
From: (8, 4) {
([ 1,65] 0.000819) ([ 1,66] 0.001400) ([ 1,67] 0.000837) ([ 1,68] 0.001570)
}
From: (8, 5) {
([ 1,66] 0.000754) ([ 1,67] 0.001001) ([ 1,68] 0.001659) ([ 1,69] 0.000728)
}
From: (8, 6) {
([ 1,67] 0.000937) ([ 1,68] 0.001454) ([ 1,69] 0.001342) ([ 1,70] 0.001243)
}
From: (8, 7) {
([ 1,68] 0.001614) ([ 1,69] 0.001482) ([ 1,70] 0.001209) ([ 1,71] 0.001755)
}
From: (8, 8) {
([ 1,69] 0.000766) ([ 1,70] 0.001379) ([ 1,71] 0.001344) ([ 1,72] 0.001123)
}
From: (8, 9) {
([ 1,70] 0.001027) ([ 1,71] 0.001668) ([ 1,72] 0.000698) ([ 1,73] 0.001291)
}
From: (9, 1) {
([ 1,71] 0.000959) ([ 1,72] 0.000917) ([ 1,73] 0.001387) ([ 1,74] 0.000839)
}
From: (9, 2) {
([ 1,72] 0.001661) ([ 1,73] 0.001677) ([ 1,74] 0.001687) ([ 1,75] 0.001250)
}
From: (9, 3) {
([ 1,73] 0.001167) ([ 1,74] 0.000812) ([ 1,75] 0.001607) ([ 1,76] 0.000983)
}
From: (9, 4) {
([ 1,74] 0.001456) ([ 1,75] 0.000884) ([ 1,76] 0.001221) ([ 1,77] 0.001617)
}
From: (9, 5) {
([ 1,75] 0.001072) ([ 1,76] 0.001040) ([ 1,77] 0.001201) ([ 1,78] 0.001082)
}
From: (9, 6) {
([ 1,76] 0.001765) ([ 1,77] 0.000703) ([ 1,78] 0.000782) ([ 1,79] 0.001801)
}
From: (9, 7) {
([ 1,77] 0.001633) ([ 1,78] 0.001234) ([ 1,79] 0.001509) ([ 1,80] 0.001633)
}
From: (9, 8) {
([ 1,78] 0.000928) ([ 1,79] 0.000869) ([ 1,80] 0.000789) ([ 1,81] 0.001582)
}
From: (9, 9) {
([ 1,79] 0.001039) ([ 1,80] 0.000970) ([ 1,81] 0.000667) ([ 1, 1] 0.000741)
}
}