% Mon Aug 3 15:42:52 2015 % Input layer: (9, 9) % Output layer: (1, 81) % Fanout size: (1, 4) % Fanout spacing: (1, 1) % Specified fanout weights Connect(estg, ea2c) { From: (1, 1) { ([ 1,80] 0.000874) ([ 1,81] 0.001066) ([ 1, 1] 0.000813) ([ 1, 2] 0.000836) } From: (1, 2) { ([ 1,81] 0.000774) ([ 1, 1] 0.001404) ([ 1, 2] 0.001591) ([ 1, 3] 0.001209) } From: (1, 3) { ([ 1, 1] 0.001185) ([ 1, 2] 0.001482) ([ 1, 3] 0.001525) ([ 1, 4] 0.001452) } From: (1, 4) { ([ 1, 2] 0.001258) ([ 1, 3] 0.000726) ([ 1, 4] 0.001191) ([ 1, 5] 0.001419) } From: (1, 5) { ([ 1, 3] 0.001599) ([ 1, 4] 0.001738) ([ 1, 5] 0.001845) ([ 1, 6] 0.001156) } From: (1, 6) { ([ 1, 4] 0.001281) ([ 1, 5] 0.001271) ([ 1, 6] 0.001817) ([ 1, 7] 0.001713) } From: (1, 7) { ([ 1, 5] 0.001598) ([ 1, 6] 0.001207) ([ 1, 7] 0.001636) ([ 1, 8] 0.001450) } From: (1, 8) { ([ 1, 6] 0.000894) ([ 1, 7] 0.001064) ([ 1, 8] 0.000796) ([ 1, 9] 0.001066) } From: (1, 9) { ([ 1, 7] 0.001734) ([ 1, 8] 0.001629) ([ 1, 9] 0.001732) ([ 1,10] 0.001645) } From: (2, 1) { ([ 1, 8] 0.001255) ([ 1, 9] 0.001593) ([ 1,10] 0.001839) ([ 1,11] 0.001458) } From: (2, 2) { ([ 1, 9] 0.000742) ([ 1,10] 0.001189) ([ 1,11] 0.000930) ([ 1,12] 0.000746) } From: (2, 3) { ([ 1,10] 0.001519) ([ 1,11] 0.000819) ([ 1,12] 0.001842) ([ 1,13] 0.000877) } From: (2, 4) { ([ 1,11] 0.000922) ([ 1,12] 0.001649) ([ 1,13] 0.001570) ([ 1,14] 0.000997) } From: (2, 5) { ([ 1,12] 0.001058) ([ 1,13] 0.001182) ([ 1,14] 0.001665) ([ 1,15] 0.001362) } From: (2, 6) { ([ 1,13] 0.001580) ([ 1,14] 0.000727) ([ 1,15] 0.001781) ([ 1,16] 0.000924) } From: (2, 7) { ([ 1,14] 0.001349) ([ 1,15] 0.001365) ([ 1,16] 0.001126) ([ 1,17] 0.000889) } From: (2, 8) { ([ 1,15] 0.001429) ([ 1,16] 0.000994) ([ 1,17] 0.000742) ([ 1,18] 0.000841) } From: (2, 9) { ([ 1,16] 0.000986) ([ 1,17] 0.000819) ([ 1,18] 0.001110) ([ 1,19] 0.001813) } From: (3, 1) { ([ 1,17] 0.001136) ([ 1,18] 0.000866) ([ 1,19] 0.001641) ([ 1,20] 0.000878) } From: (3, 2) { ([ 1,18] 0.001537) ([ 1,19] 0.000796) ([ 1,20] 0.001216) ([ 1,21] 0.001662) } From: (3, 3) { ([ 1,19] 0.001113) ([ 1,20] 0.000776) ([ 1,21] 0.000901) ([ 1,22] 0.000668) } From: (3, 4) { ([ 1,20] 0.001508) ([ 1,21] 0.001508) ([ 1,22] 0.000864) ([ 1,23] 0.000791) } From: (3, 5) { ([ 1,21] 0.000729) ([ 1,22] 0.001511) ([ 1,23] 0.001715) ([ 1,24] 0.001773) } From: (3, 6) { ([ 1,22] 0.001540) ([ 1,23] 0.001350) ([ 1,24] 0.001276) ([ 1,25] 0.001710) } From: (3, 7) { ([ 1,23] 0.000663) ([ 1,24] 0.000776) ([ 1,25] 0.001495) ([ 1,26] 0.000978) } From: (3, 8) { ([ 1,24] 0.001098) ([ 1,25] 0.000814) ([ 1,26] 0.001238) ([ 1,27] 0.001566) } From: (3, 9) { ([ 1,25] 0.000757) ([ 1,26] 0.001588) ([ 1,27] 0.001470) ([ 1,28] 0.001328) } From: (4, 1) { ([ 1,26] 0.000781) ([ 1,27] 0.000820) ([ 1,28] 0.001482) ([ 1,29] 0.001213) } From: (4, 2) { ([ 1,27] 0.001687) ([ 1,28] 0.000754) ([ 1,29] 0.001815) ([ 1,30] 0.000849) } From: (4, 3) { ([ 1,28] 0.000691) ([ 1,29] 0.001098) ([ 1,30] 0.001584) ([ 1,31] 0.001756) } From: (4, 4) { ([ 1,29] 0.001035) ([ 1,30] 0.001642) ([ 1,31] 0.001178) ([ 1,32] 0.000814) } From: (4, 5) { ([ 1,30] 0.001227) ([ 1,31] 0.000956) ([ 1,32] 0.001209) ([ 1,33] 0.001780) } From: (4, 6) { ([ 1,31] 0.001048) ([ 1,32] 0.000894) ([ 1,33] 0.001770) ([ 1,34] 0.001312) } From: (4, 7) { ([ 1,32] 0.000920) ([ 1,33] 0.001444) ([ 1,34] 0.001008) ([ 1,35] 0.001563) } From: (4, 8) { ([ 1,33] 0.001290) ([ 1,34] 0.001083) ([ 1,35] 0.001081) ([ 1,36] 0.001365) } From: (4, 9) { ([ 1,34] 0.000663) ([ 1,35] 0.001068) ([ 1,36] 0.001200) ([ 1,37] 0.001692) } From: (5, 1) { ([ 1,35] 0.001266) ([ 1,36] 0.000790) ([ 1,37] 0.000798) ([ 1,38] 0.000755) } From: (5, 2) { ([ 1,36] 0.001181) ([ 1,37] 0.001473) ([ 1,38] 0.000944) ([ 1,39] 0.001766) } From: (5, 3) { ([ 1,37] 0.001213) ([ 1,38] 0.001467) ([ 1,39] 0.001386) ([ 1,40] 0.001014) } From: (5, 4) { ([ 1,38] 0.001273) ([ 1,39] 0.001411) ([ 1,40] 0.000717) ([ 1,41] 0.001609) } From: (5, 5) { ([ 1,39] 0.001566) ([ 1,40] 0.001183) ([ 1,41] 0.001502) ([ 1,42] 0.000935) } From: (5, 6) { ([ 1,40] 0.001084) ([ 1,41] 0.000857) ([ 1,42] 0.001827) ([ 1,43] 0.001685) } From: (5, 7) { ([ 1,41] 0.000658) ([ 1,42] 0.000824) ([ 1,43] 0.001301) ([ 1,44] 0.001444) } From: (5, 8) { ([ 1,42] 0.001726) ([ 1,43] 0.001365) ([ 1,44] 0.001067) ([ 1,45] 0.000934) } From: (5, 9) { ([ 1,43] 0.001387) ([ 1,44] 0.001827) ([ 1,45] 0.001821) ([ 1,46] 0.001413) } From: (6, 1) { ([ 1,44] 0.001319) ([ 1,45] 0.001122) ([ 1,46] 0.001632) ([ 1,47] 0.001311) } From: (6, 2) { ([ 1,45] 0.001803) ([ 1,46] 0.001229) ([ 1,47] 0.001285) ([ 1,48] 0.001047) } From: (6, 3) { ([ 1,46] 0.000967) ([ 1,47] 0.001413) ([ 1,48] 0.001714) ([ 1,49] 0.001062) } From: (6, 4) { ([ 1,47] 0.001340) ([ 1,48] 0.000910) ([ 1,49] 0.001522) ([ 1,50] 0.001006) } From: (6, 5) { ([ 1,48] 0.000927) ([ 1,49] 0.000739) ([ 1,50] 0.001698) ([ 1,51] 0.001009) } From: (6, 6) { ([ 1,49] 0.000661) ([ 1,50] 0.001411) ([ 1,51] 0.000737) ([ 1,52] 0.001319) } From: (6, 7) { ([ 1,50] 0.001113) ([ 1,51] 0.001103) ([ 1,52] 0.001564) ([ 1,53] 0.001682) } From: (6, 8) { ([ 1,51] 0.001025) ([ 1,52] 0.001407) ([ 1,53] 0.000831) ([ 1,54] 0.000850) } From: (6, 9) { ([ 1,52] 0.001167) ([ 1,53] 0.000911) ([ 1,54] 0.001231) ([ 1,55] 0.001776) } From: (7, 1) { ([ 1,53] 0.000952) ([ 1,54] 0.001410) ([ 1,55] 0.001314) ([ 1,56] 0.000751) } From: (7, 2) { ([ 1,54] 0.001652) ([ 1,55] 0.000805) ([ 1,56] 0.001236) ([ 1,57] 0.001552) } From: (7, 3) { ([ 1,55] 0.001500) ([ 1,56] 0.000985) ([ 1,57] 0.001390) ([ 1,58] 0.001287) } From: (7, 4) { ([ 1,56] 0.000999) ([ 1,57] 0.001058) ([ 1,58] 0.001490) ([ 1,59] 0.000682) } From: (7, 5) { ([ 1,57] 0.001720) ([ 1,58] 0.000667) ([ 1,59] 0.000878) ([ 1,60] 0.000852) } From: (7, 6) { ([ 1,58] 0.001152) ([ 1,59] 0.000668) ([ 1,60] 0.000907) ([ 1,61] 0.000741) } From: (7, 7) { ([ 1,59] 0.001007) ([ 1,60] 0.000839) ([ 1,61] 0.001738) ([ 1,62] 0.001568) } From: (7, 8) { ([ 1,60] 0.001563) ([ 1,61] 0.001379) ([ 1,62] 0.001043) ([ 1,63] 0.001262) } From: (7, 9) { ([ 1,61] 0.001314) ([ 1,62] 0.000969) ([ 1,63] 0.001467) ([ 1,64] 0.000885) } From: (8, 1) { ([ 1,62] 0.001062) ([ 1,63] 0.000951) ([ 1,64] 0.001540) ([ 1,65] 0.001337) } From: (8, 2) { ([ 1,63] 0.001349) ([ 1,64] 0.001679) ([ 1,65] 0.001133) ([ 1,66] 0.001771) } From: (8, 3) { ([ 1,64] 0.001065) ([ 1,65] 0.001122) ([ 1,66] 0.000715) ([ 1,67] 0.001091) } From: (8, 4) { ([ 1,65] 0.001518) ([ 1,66] 0.001623) ([ 1,67] 0.000710) ([ 1,68] 0.001116) } From: (8, 5) { ([ 1,66] 0.001436) ([ 1,67] 0.000770) ([ 1,68] 0.001692) ([ 1,69] 0.001221) } From: (8, 6) { ([ 1,67] 0.001528) ([ 1,68] 0.000656) ([ 1,69] 0.001494) ([ 1,70] 0.001535) } From: (8, 7) { ([ 1,68] 0.001074) ([ 1,69] 0.001537) ([ 1,70] 0.000807) ([ 1,71] 0.001509) } From: (8, 8) { ([ 1,69] 0.001637) ([ 1,70] 0.000680) ([ 1,71] 0.000852) ([ 1,72] 0.000788) } From: (8, 9) { ([ 1,70] 0.001144) ([ 1,71] 0.001813) ([ 1,72] 0.001299) ([ 1,73] 0.000712) } From: (9, 1) { ([ 1,71] 0.000831) ([ 1,72] 0.001831) ([ 1,73] 0.000878) ([ 1,74] 0.001016) } From: (9, 2) { ([ 1,72] 0.000810) ([ 1,73] 0.000926) ([ 1,74] 0.000798) ([ 1,75] 0.001732) } From: (9, 3) { ([ 1,73] 0.001140) ([ 1,74] 0.001604) ([ 1,75] 0.001227) ([ 1,76] 0.001005) } From: (9, 4) { ([ 1,74] 0.000799) ([ 1,75] 0.000867) ([ 1,76] 0.001044) ([ 1,77] 0.001077) } From: (9, 5) { ([ 1,75] 0.001172) ([ 1,76] 0.001184) ([ 1,77] 0.000685) ([ 1,78] 0.001059) } From: (9, 6) { ([ 1,76] 0.001652) ([ 1,77] 0.001577) ([ 1,78] 0.000928) ([ 1,79] 0.000713) } From: (9, 7) { ([ 1,77] 0.000656) ([ 1,78] 0.000771) ([ 1,79] 0.001150) ([ 1,80] 0.001136) } From: (9, 8) { ([ 1,78] 0.001788) ([ 1,79] 0.001725) ([ 1,80] 0.001502) ([ 1,81] 0.001507) } From: (9, 9) { ([ 1,79] 0.000895) ([ 1,80] 0.000768) ([ 1,81] 0.000791) ([ 1, 1] 0.000781) } }