% Tue Apr 25 17:10:04 2000 % Input layer: (9, 9) % Output layer: (1, 81) % Fanout size: (1, 4) % Fanout spacing: (1, 1) % Specified fanout weights Connect(estg, ea2d) { From: (1, 1) { ([ 1,80] 0.001777) ([ 1,81] 0.001266) ([ 1, 1] 0.001730) ([ 1, 2] 0.001485) } From: (1, 2) { ([ 1,81] 0.001403) ([ 1, 1] 0.001748) ([ 1, 2] 0.000918) ([ 1, 3] 0.000872) } From: (1, 3) { ([ 1, 1] 0.001378) ([ 1, 2] 0.000692) ([ 1, 3] 0.001024) ([ 1, 4] 0.000777) } From: (1, 4) { ([ 1, 2] 0.000984) ([ 1, 3] 0.000840) ([ 1, 4] 0.001005) ([ 1, 5] 0.001028) } From: (1, 5) { ([ 1, 3] 0.001328) ([ 1, 4] 0.001388) ([ 1, 5] 0.000803) ([ 1, 6] 0.001452) } From: (1, 6) { ([ 1, 4] 0.001008) ([ 1, 5] 0.000821) ([ 1, 6] 0.001172) ([ 1, 7] 0.001339) } From: (1, 7) { ([ 1, 5] 0.000910) ([ 1, 6] 0.001732) ([ 1, 7] 0.001464) ([ 1, 8] 0.001597) } From: (1, 8) { ([ 1, 6] 0.001293) ([ 1, 7] 0.000784) ([ 1, 8] 0.001041) ([ 1, 9] 0.001229) } From: (1, 9) { ([ 1, 7] 0.001604) ([ 1, 8] 0.001794) ([ 1, 9] 0.000700) ([ 1,10] 0.001234) } From: (2, 1) { ([ 1, 8] 0.001486) ([ 1, 9] 0.001411) ([ 1,10] 0.001745) ([ 1,11] 0.001253) } From: (2, 2) { ([ 1, 9] 0.001797) ([ 1,10] 0.001012) ([ 1,11] 0.001290) ([ 1,12] 0.001806) } From: (2, 3) { ([ 1,10] 0.001557) ([ 1,11] 0.001577) ([ 1,12] 0.001124) ([ 1,13] 0.000897) } From: (2, 4) { ([ 1,11] 0.000965) ([ 1,12] 0.001731) ([ 1,13] 0.001084) ([ 1,14] 0.001318) } From: (2, 5) { ([ 1,12] 0.001615) ([ 1,13] 0.001568) ([ 1,14] 0.000911) ([ 1,15] 0.001824) } From: (2, 6) { ([ 1,13] 0.001516) ([ 1,14] 0.001573) ([ 1,15] 0.000843) ([ 1,16] 0.001780) } From: (2, 7) { ([ 1,14] 0.001404) ([ 1,15] 0.000833) ([ 1,16] 0.001718) ([ 1,17] 0.000959) } From: (2, 8) { ([ 1,15] 0.001590) ([ 1,16] 0.001139) ([ 1,17] 0.001103) ([ 1,18] 0.001521) } From: (2, 9) { ([ 1,16] 0.001307) ([ 1,17] 0.001317) ([ 1,18] 0.001551) ([ 1,19] 0.001331) } From: (3, 1) { ([ 1,17] 0.001206) ([ 1,18] 0.000999) ([ 1,19] 0.001538) ([ 1,20] 0.001603) } From: (3, 2) { ([ 1,18] 0.001005) ([ 1,19] 0.001287) ([ 1,20] 0.000654) ([ 1,21] 0.001665) } From: (3, 3) { ([ 1,19] 0.001253) ([ 1,20] 0.000668) ([ 1,21] 0.000976) ([ 1,22] 0.000724) } From: (3, 4) { ([ 1,20] 0.001844) ([ 1,21] 0.000900) ([ 1,22] 0.001421) ([ 1,23] 0.001642) } From: (3, 5) { ([ 1,21] 0.001503) ([ 1,22] 0.001737) ([ 1,23] 0.001345) ([ 1,24] 0.001231) } From: (3, 6) { ([ 1,22] 0.001231) ([ 1,23] 0.001417) ([ 1,24] 0.000765) ([ 1,25] 0.001220) } From: (3, 7) { ([ 1,23] 0.001761) ([ 1,24] 0.000842) ([ 1,25] 0.001116) ([ 1,26] 0.001221) } From: (3, 8) { ([ 1,24] 0.001320) ([ 1,25] 0.000723) ([ 1,26] 0.001496) ([ 1,27] 0.001519) } From: (3, 9) { ([ 1,25] 0.000920) ([ 1,26] 0.001653) ([ 1,27] 0.001300) ([ 1,28] 0.000774) } From: (4, 1) { ([ 1,26] 0.001722) ([ 1,27] 0.001256) ([ 1,28] 0.001091) ([ 1,29] 0.000694) } From: (4, 2) { ([ 1,27] 0.001034) ([ 1,28] 0.000960) ([ 1,29] 0.001781) ([ 1,30] 0.001478) } From: (4, 3) { ([ 1,28] 0.001481) ([ 1,29] 0.001190) ([ 1,30] 0.001797) ([ 1,31] 0.001272) } From: (4, 4) { ([ 1,29] 0.000987) ([ 1,30] 0.001434) ([ 1,31] 0.000839) ([ 1,32] 0.001492) } From: (4, 5) { ([ 1,30] 0.001061) ([ 1,31] 0.001197) ([ 1,32] 0.001073) ([ 1,33] 0.001387) } From: (4, 6) { ([ 1,31] 0.000654) ([ 1,32] 0.000747) ([ 1,33] 0.001443) ([ 1,34] 0.000717) } From: (4, 7) { ([ 1,32] 0.001380) ([ 1,33] 0.001822) ([ 1,34] 0.000892) ([ 1,35] 0.001393) } From: (4, 8) { ([ 1,33] 0.000749) ([ 1,34] 0.001829) ([ 1,35] 0.001768) ([ 1,36] 0.000911) } From: (4, 9) { ([ 1,34] 0.000847) ([ 1,35] 0.001589) ([ 1,36] 0.001519) ([ 1,37] 0.001273) } From: (5, 1) { ([ 1,35] 0.000654) ([ 1,36] 0.001739) ([ 1,37] 0.001708) ([ 1,38] 0.001517) } From: (5, 2) { ([ 1,36] 0.001226) ([ 1,37] 0.001483) ([ 1,38] 0.000882) ([ 1,39] 0.001750) } From: (5, 3) { ([ 1,37] 0.001610) ([ 1,38] 0.000934) ([ 1,39] 0.001062) ([ 1,40] 0.000655) } From: (5, 4) { ([ 1,38] 0.001080) ([ 1,39] 0.001326) ([ 1,40] 0.001756) ([ 1,41] 0.000698) } From: (5, 5) { ([ 1,39] 0.001376) ([ 1,40] 0.001815) ([ 1,41] 0.001344) ([ 1,42] 0.001426) } From: (5, 6) { ([ 1,40] 0.001444) ([ 1,41] 0.001485) ([ 1,42] 0.001669) ([ 1,43] 0.000755) } From: (5, 7) { ([ 1,41] 0.001540) ([ 1,42] 0.001721) ([ 1,43] 0.000693) ([ 1,44] 0.001196) } From: (5, 8) { ([ 1,42] 0.001845) ([ 1,43] 0.000832) ([ 1,44] 0.000759) ([ 1,45] 0.001159) } From: (5, 9) { ([ 1,43] 0.000975) ([ 1,44] 0.001471) ([ 1,45] 0.001655) ([ 1,46] 0.001796) } From: (6, 1) { ([ 1,44] 0.001142) ([ 1,45] 0.001395) ([ 1,46] 0.000691) ([ 1,47] 0.001090) } From: (6, 2) { ([ 1,45] 0.000833) ([ 1,46] 0.001606) ([ 1,47] 0.001487) ([ 1,48] 0.000918) } From: (6, 3) { ([ 1,46] 0.001103) ([ 1,47] 0.001628) ([ 1,48] 0.001655) ([ 1,49] 0.001340) } From: (6, 4) { ([ 1,47] 0.001177) ([ 1,48] 0.000836) ([ 1,49] 0.000974) ([ 1,50] 0.000833) } From: (6, 5) { ([ 1,48] 0.001375) ([ 1,49] 0.001324) ([ 1,50] 0.001155) ([ 1,51] 0.001008) } From: (6, 6) { ([ 1,49] 0.000820) ([ 1,50] 0.000658) ([ 1,51] 0.000807) ([ 1,52] 0.001307) } From: (6, 7) { ([ 1,50] 0.001186) ([ 1,51] 0.000704) ([ 1,52] 0.001018) ([ 1,53] 0.001822) } From: (6, 8) { ([ 1,51] 0.001497) ([ 1,52] 0.001226) ([ 1,53] 0.001694) ([ 1,54] 0.001464) } From: (6, 9) { ([ 1,52] 0.001818) ([ 1,53] 0.001717) ([ 1,54] 0.001732) ([ 1,55] 0.001801) } From: (7, 1) { ([ 1,53] 0.000932) ([ 1,54] 0.001457) ([ 1,55] 0.000678) ([ 1,56] 0.000845) } From: (7, 2) { ([ 1,54] 0.001799) ([ 1,55] 0.000671) ([ 1,56] 0.000730) ([ 1,57] 0.001054) } From: (7, 3) { ([ 1,55] 0.001709) ([ 1,56] 0.001048) ([ 1,57] 0.001620) ([ 1,58] 0.001023) } From: (7, 4) { ([ 1,56] 0.001047) ([ 1,57] 0.001232) ([ 1,58] 0.000745) ([ 1,59] 0.000826) } From: (7, 5) { ([ 1,57] 0.000732) ([ 1,58] 0.001186) ([ 1,59] 0.001724) ([ 1,60] 0.001032) } From: (7, 6) { ([ 1,58] 0.001723) ([ 1,59] 0.001516) ([ 1,60] 0.001036) ([ 1,61] 0.001194) } From: (7, 7) { ([ 1,59] 0.001172) ([ 1,60] 0.001036) ([ 1,61] 0.001459) ([ 1,62] 0.001751) } From: (7, 8) { ([ 1,60] 0.001017) ([ 1,61] 0.001711) ([ 1,62] 0.001029) ([ 1,63] 0.000711) } From: (7, 9) { ([ 1,61] 0.001484) ([ 1,62] 0.001771) ([ 1,63] 0.001553) ([ 1,64] 0.001120) } From: (8, 1) { ([ 1,62] 0.001425) ([ 1,63] 0.000943) ([ 1,64] 0.001763) ([ 1,65] 0.001620) } From: (8, 2) { ([ 1,63] 0.001603) ([ 1,64] 0.001443) ([ 1,65] 0.001432) ([ 1,66] 0.000715) } From: (8, 3) { ([ 1,64] 0.000751) ([ 1,65] 0.001641) ([ 1,66] 0.001675) ([ 1,67] 0.001719) } From: (8, 4) { ([ 1,65] 0.000687) ([ 1,66] 0.001461) ([ 1,67] 0.001756) ([ 1,68] 0.001367) } From: (8, 5) { ([ 1,66] 0.001173) ([ 1,67] 0.001504) ([ 1,68] 0.001535) ([ 1,69] 0.001105) } From: (8, 6) { ([ 1,67] 0.000720) ([ 1,68] 0.001360) ([ 1,69] 0.000827) ([ 1,70] 0.001747) } From: (8, 7) { ([ 1,68] 0.001431) ([ 1,69] 0.001515) ([ 1,70] 0.001249) ([ 1,71] 0.000684) } From: (8, 8) { ([ 1,69] 0.001762) ([ 1,70] 0.000848) ([ 1,71] 0.001346) ([ 1,72] 0.001006) } From: (8, 9) { ([ 1,70] 0.001254) ([ 1,71] 0.001131) ([ 1,72] 0.001552) ([ 1,73] 0.000860) } From: (9, 1) { ([ 1,71] 0.001326) ([ 1,72] 0.000789) ([ 1,73] 0.001064) ([ 1,74] 0.000793) } From: (9, 2) { ([ 1,72] 0.000695) ([ 1,73] 0.001273) ([ 1,74] 0.001097) ([ 1,75] 0.000709) } From: (9, 3) { ([ 1,73] 0.001094) ([ 1,74] 0.001134) ([ 1,75] 0.001221) ([ 1,76] 0.001132) } From: (9, 4) { ([ 1,74] 0.001296) ([ 1,75] 0.001250) ([ 1,76] 0.001365) ([ 1,77] 0.001840) } From: (9, 5) { ([ 1,75] 0.001650) ([ 1,76] 0.001249) ([ 1,77] 0.000910) ([ 1,78] 0.001688) } From: (9, 6) { ([ 1,76] 0.000737) ([ 1,77] 0.001245) ([ 1,78] 0.000921) ([ 1,79] 0.001040) } From: (9, 7) { ([ 1,77] 0.001026) ([ 1,78] 0.001238) ([ 1,79] 0.001063) ([ 1,80] 0.001104) } From: (9, 8) { ([ 1,78] 0.001701) ([ 1,79] 0.000694) ([ 1,80] 0.001613) ([ 1,81] 0.001727) } From: (9, 9) { ([ 1,79] 0.001153) ([ 1,80] 0.000735) ([ 1,81] 0.001205) ([ 1, 1] 0.001739) } }