# ============================================================================
#
# PUBLIC DOMAIN NOTICE
#
# National Institute on Deafness and Other Communication Disorders
#
# This software/database is a "United States Government Work" under the
# terms of the United States Copyright Act. It was written as part of
# the author's official duties as a United States Government employee and
# thus cannot be copyrighted. This software/database is freely available
# to the public for use. The NIDCD and the U.S. Government have not placed
# any restriction on its use or reproduction.
#
# Although all reasonable efforts have been taken to ensure the accuracy
# and reliability of the software and data, the NIDCD and the U.S. Government
# do not and cannot warrant the performance or results that may be obtained
# by using this software or data. The NIDCD and the U.S. Government disclaim
# all warranties, express or implied, including warranties of performance,
# merchantability or fitness for any particular purpose.
#
# Please cite the author in any work or product based on this material.
#
# ==========================================================================
# ***************************************************************************
#
# Large-Scale Neural Modeling software (LSNM)
#
# Section on Brain Imaging and Modeling
# Voice, Speech and Language Branch
# National Institute on Deafness and Other Communication Disorders
# National Institutes of Health
#
# This file (plot_neural_auditory_topographic.py) was created on March 26, 2015.
#
#
# Author: Antonio Ulloa. Last updated by Antonio Ulloa March 26, 2015
# **************************************************************************/
# plot_neural_auditory_topographic.py
#
# Plays a movie using output data files of visual delay-match-to-sample simulation
import numpy as np
import matplotlib.pyplot as plt
# Load data files
mgns = np.loadtxt('mgns.out')
efd1 = np.loadtxt('efd1.out')
efd2 = np.loadtxt('efd2.out')
ea1u = np.loadtxt('ea1u.out')
ea1d = np.loadtxt('ea1d.out')
ea2u = np.loadtxt('ea2u.out')
ea2d = np.loadtxt('ea2d.out')
ea2c = np.loadtxt('ea2c.out')
exfr = np.loadtxt('exfr.out')
exfs = np.loadtxt('exfs.out')
estg = np.loadtxt('estg.out')
fig = plt.figure(1)
plt.suptitle('SIMULATED NEURAL ACTIVITY')
# adds index of each array item to the value contained in the item
for (i,j), value in np.ndenumerate(mgns):
mgns[i][j] = mgns[i][j] + j
efd1[i][j] = efd1[i][j] + j
efd2[i][j] = efd2[i][j] + j
ea1u[i][j] = ea1u[i][j] + j
ea1d[i][j] = ea1d[i][j] + j
ea2u[i][j] = ea2u[i][j] + j
ea2d[i][j] = ea2d[i][j] + j
ea2c[i][j] = ea2c[i][j] + j
exfr[i][j] = exfr[i][j] + j
exfs[i][j] = exfs[i][j] + j
estg[i][j] = estg[i][j] + j
# Render LGN array in a colormap
ax = plt.subplot(3,4,1)
plt.plot(mgns)
plt.title('MGN')
plt.ylim([38,69])
# Render EV1h array in a colormap
ax = plt.subplot(3,4,5)
plt.plot(ea1u)
plt.title('A1u')
plt.ylim([38,69])
# Render EV1v array in a colormap
ax = plt.subplot(3,4,9)
plt.plot(ea1d)
plt.title('A1d')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,2)
plt.plot(ea2u)
plt.title('A2u')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,6)
plt.plot(ea2d)
plt.title('A2d')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,10)
plt.plot(ea2c)
plt.title('A2c')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,3)
plt.plot(estg)
plt.title('STG')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,7)
plt.plot(exfs)
plt.title('FS')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,11)
plt.plot(efd1)
plt.title('FD1')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,4)
plt.plot(efd2)
plt.title('FD2')
plt.ylim([38,69])
# Render array in a colormap
ax = plt.subplot(3,4,8)
plt.plot(exfr)
plt.title('FR')
plt.ylim([38,69])
# Show the plot on the screen
plt.show()