# ============================================================================
#
# PUBLIC DOMAIN NOTICE
#
# National Institute on Deafness and Other Communication Disorders
#
# This software/database is a "United States Government Work" under the
# terms of the United States Copyright Act. It was written as part of
# the author's official duties as a United States Government employee and
# thus cannot be copyrighted. This software/database is freely available
# to the public for use. The NIDCD and the U.S. Government have not placed
# any restriction on its use or reproduction.
#
# Although all reasonable efforts have been taken to ensure the accuracy
# and reliability of the software and data, the NIDCD and the U.S. Government
# do not and cannot warrant the performance or results that may be obtained
# by using this software or data. The NIDCD and the U.S. Government disclaim
# all warranties, express or implied, including warranties of performance,
# merchantability or fitness for any particular purpose.
#
# Please cite the author in any work or product based on this material.
#
# ==========================================================================
# ***************************************************************************
#
# Large-Scale Neural Modeling software (LSNM)
#
# Section on Brain Imaging and Modeling
# Voice, Speech and Language Branch
# National Institute on Deafness and Other Communication Disorders
# National Institutes of Health
#
# This file (plot_neural_visual.py) was created on December 1, 2014.
#
#
# Author: Antonio Ulloa. Last updated by Antonio Ulloa on July 19 2015
# **************************************************************************/
# plot_neural_visual.py
#
# Plot output data files of visual delay-match-to-sample simulation
# what are the locations of relevant TVB nodes within TVB array?
v1_loc = 345
v4_loc = 393
it_loc = 413
d1_loc = 74
d2_loc = 41
fs_loc = 47
fr_loc = 125
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
# Load data files
lgns = np.loadtxt('lgns.out')
efd1 = np.loadtxt('efd1.out')
efd2 = np.loadtxt('efd2.out')
ev1h = np.loadtxt('ev1h.out')
ev1v = np.loadtxt('ev1v.out')
ev4c = np.loadtxt('ev4c.out')
ev4h = np.loadtxt('ev4h.out')
ev4v = np.loadtxt('ev4v.out')
exfr = np.loadtxt('exfr.out')
exfs = np.loadtxt('exfs.out')
exss = np.loadtxt('exss.out')
# load file containing TVB nodes electrical activity
try:
tvb = np.load('tvb_neuronal.npy')
tvb_v1 = tvb[:, 0, v1_loc, 0]
tvb_v4 = tvb[:, 0, v4_loc, 0]
tvb_it = tvb[:, 0, it_loc, 0]
tvb_fs = tvb[:, 0, fs_loc, 0]
tvb_d1 = tvb[:, 0, d1_loc, 0]
tvb_d2 = tvb[:, 0, d2_loc, 0]
tvb_fr = tvb[:, 0, fr_loc, 0]
except:
pass
# Extract number of timesteps from one of the matrices
timesteps = lgns.shape[0]
print timesteps
# the following variable defines the timesteps we will see in the resulting plot
# we also convert the number of timesteps to seconds by multiplying by 50 and dividng by 1000
ts_to_plot = 660
x_lim = ts_to_plot * 50. / 1000.
# Construct a numpy array of timesteps (data points provided in data file)
t = np.linspace(0, (ts_to_plot-1)*50./1000., num=ts_to_plot)
# Set up plot
fig1=plt.figure(1, facecolor='white')
# increase font size
plt.rcParams.update({'font.size': 15})
# optional caption for figure
#txt = '''Figure 1. Plots of electrical activity of all submodules of the LSNM visual model (red lines) and host nodes of the TVB connectome
#(blue lines), for a representative simulated subject. The simulated tasks were: three DMS trials (match, mismatch, match), followed
#by three control trials where degraded shapes were used as inputs and the attention parameter was set to low (passive viewing).
#The y axis of each of the plots represents level of electrical activity, between zero and one. The x axis of the plots represents
#time in seconds.'''
# Plot V1 module
ax = plt.subplot(10,1,1)
try:
ax.plot(t, tvb_v1[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, ev1h[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
#ax.set_title('SIMULATED ELECTRICAL ACTIVITY, V1 and V4')
plt.ylabel('V1h', rotation='horizontal', horizontalalignment='right')
ax = plt.subplot(10,1,2)
try:
ax.plot(t, tvb_v1[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, ev1v[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('V1v', rotation='horizontal', horizontalalignment='right')
# Plot V4 module
ax = plt.subplot(10,1,3)
try:
ax.plot(t, tvb_v4[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, ev4h[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('V4h', rotation='horizontal', horizontalalignment='right')
ax = plt.subplot(10,1,4)
try:
ax.plot(t, tvb_v4[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, ev4c[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('V4c', rotation='horizontal', horizontalalignment='right')
ax = plt.subplot(10,1,5)
try:
ax.plot(t, tvb_v4[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, ev4v[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('V4v', rotation='horizontal', horizontalalignment='right')
#plt.tight_layout()
# Plot IT module
ax = plt.subplot(10,1,6)
try:
ax.plot(t, tvb_it[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, exss[0:ts_to_plot], color='r')
ax.set_yticks([])
#ax.set_title('SIMULATED ELECTRICAL ACTIVITY, IT and PFC')
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('IT', rotation='horizontal', horizontalalignment='right')
# Plot PFC modules FS, FD1, and FD2
ax = plt.subplot(10,1,7)
try:
ax.plot(t, tvb_fs[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, exfs[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('FS', rotation='horizontal', horizontalalignment='right')
ax = plt.subplot(10,1,8)
try:
ax.plot(t, tvb_d1[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, efd1[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('D1', rotation='horizontal', horizontalalignment='right')
ax = plt.subplot(10,1,9)
try:
ax.plot(t, tvb_d2[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, efd2[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel('D2', rotation='horizontal', horizontalalignment='right')
# Plot FR (Response module)
ax = plt.subplot(10,1,10)
try:
ax.plot(t, tvb_fr[0:ts_to_plot], color='b', linewidth=2)
except:
pass
ax.plot(t, exfr[0:ts_to_plot], color='r')
ax.set_yticks([])
ax.set_xlim(0,x_lim)
plt.ylabel('FR', rotation='horizontal', horizontalalignment='right')
plt.xlabel('Time (s)')
#plt.tight_layout()
# optional figure caption
#fig1.subplots_adjust(bottom=0.2)
#fig1.text(.1, 0.03, txt)
# Show the plot on the screen
plt.show()