: $Id: Ih_old.mod,v 1.6 1995/02/16 22:18:58 ethomas Exp $
TITLE anomalous rectifier channel
COMMENT
:
: Anomalous Rectifier Ih - cation (Na/K) channel
: Differential equations
:
: Model of double activation (Destexhe & Babloyantz, 1992)
: Activation functions were fitted from
: McCormick & Pape, J. Physiol. 431: 291, 1990.
: and Soltesz et al, J. Physiol. 441: 175, 1991.
:
: Kinetic model of calcium-induced shift in the activation of Ih channels
: Model of A. Destexhe, 1992, inspired from the dependence of If on calcium
: in heart cells (Harigawa & Hirishawa, J. Physiol. 409: 121, 1989)
:
: ACTIVATE BINDING MODEL :
: - binding of Ca on S and F channels (VERSION 2: nexp binding sites)
: - Ca binds on activated gates (rate constants k1 and k2)
: idem before:
: s0 (closed) <-> s1 (open) ; rate cst alpha1,beta1
: f0 (closed) <-> f1 (open) ; rate cst alpha1,beta1
: new:
: s1 (open) + Ca <-> s2 (open) ; rate cst k1,k2
: f1 (open) + Ca <-> f2 (open) ; rate cst k1,k2
:
: - this suffies to account for shift of Ih activation with calcium
: (no need of other mechanism - or other time constants than k1,k2)
:
: PARAMETERS:
:
: VERSION 2: reformulation of parameters k1,k2 into k2 and cac.
: cac = (k2/k1)^(1/nexp) = half activation calcium dependence.
: - k2: this rate constant is the inverse of the real time constant of
: the binding of Ca to Ih channel. (0.001 to 0.0001 ms-1)
: - cac: the half activation must be adapted to calcium dynamics of
: the cell. Usually, cac = 1e-4 mM.
: - nexp:number of sites of calcium on h-channels, nexp=2 here.
:
: MODIF: addition of control variables (June 11 93)
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX iar
USEION other WRITE iother VALENCE 1
USEION ca READ cai
RANGE ghbar, gh, i
GLOBAL k2, cac, nexp, h_inf, tau_s, tau_f, controls, controlf
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(mA) = (milliamp)
(mV) = (millivolt)
(msM) = (ms mM)
}
PARAMETER {
eh = -43 (mV)
celsius = 36 (degC)
ghbar = .0001 (mho/cm2)
cac = 1e-4 (mM) : half-activation of calcium dependence
k2 = 0.001 (1/ms) : inverse of time constant
nexp = 2 : number of binding sites
controls = 1 : control of variable s (0=no s1, s2)
controlf = 1 : control of variable f (0=no f1, f2)
}
STATE {
s1
s2
f1
f2
}
ASSIGNED {
v (mV)
cai (mM)
i (mA/cm2)
iother (mA/cm2)
gh (mho/cm2)
h_inf
tau_s (ms)
tau_f (ms)
alpha1 (1/ms)
alpha2 (1/ms)
beta1 (1/ms)
beta2 (1/ms)
kk (1/ms)
fderiv (1/ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD runge
if(controls == 0) {
gh = ghbar * (f1+f2)
} else if(controlf == 0) {
gh = ghbar * (s1+s2)
} else {
gh = ghbar * (s1+s2) * (f1+f2)
}
i = gh * (v - eh)
iother = i
}
DERIVATIVE states { LOCAL s0,f0
evaluate_fct(v)
s0 = 1 - s1 - s2
f0 = 1 - f1 - f2
kk = k2 * (5e-5/cac)^nexp
fderiv = kk*s1 - k2*s2
s1' = alpha1*s0 - beta1*s1 - fderiv
s2' = fderiv
fderiv = kk*f1 - k2*f2
f1' = alpha2*f0 - beta2*f1 - fderiv
f2' = fderiv
}
UNITSOFF
INITIAL {
:
: Experiments of Coulter et al were at 36 deg.C
: Q10 is assumed equal to 3
:
tadj = 3.0 ^ ((celsius-36)/10)
evaluate_fct(v)
kk = k2 * (cai/cac)^nexp
s1 = alpha1*k2/(alpha1*kk + alpha1*k2 + beta1*k2)
s2 = alpha1*kk/(alpha1*kk + alpha1*k2 + beta1*k2)
f1 = alpha2*k2/(alpha2*kk + alpha2*k2 + beta2*k2)
f2 = alpha2*kk/(alpha2*kk + alpha2*k2 + beta2*k2)
}
PROCEDURE evaluate_fct(v (mV)) {
h_inf = 1 / ( 1 + exp((v+68.9)/6.5) ) : sigmoide "square root"
tau_s = exp((v+183.6)/15.24) / tadj : version J neuro
tau_f = exp((v+158.6)/11.2) / ( 1 + exp((v+75)/5.5) ) / tadj
alpha1 = controls * h_inf / tau_s
beta1 = ( 1 - h_inf ) / tau_s
alpha2 = controlf * h_inf / tau_f
beta2 = ( 1 - h_inf ) / tau_f
}
UNITSON