: $Id: IT_wang.mod,v 1.5 1994/04/14 01:28:26 billl Exp $
TITLE T-calcium channel
:
: T-type calcium channel
: Differential equations
:
: Model of Wang et al., J neurophysiol., 66: 839, 1991
: Parameters from Destexhe & Babloyantz, 1992
: Q10 changed to 5 and 3 TEST
:
: Shift parameter for screening charge: 2 mV
:
: Reversal potential taken from Nernst Equation
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX it
USEION ca READ cai,cao WRITE ica
RANGE gcabar, m_inf, tau_m, alph1, alph2, KK, shift
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
: eca = 120 (mV)
gcabar = .0008 (mho/cm2)
shift = 2 (mV)
cai = 2.4e-4 (mM) : adjusted for eca=120 mV
cao = 2 (mM)
}
STATE {
m h d
}
ASSIGNED {
ica (mA/cm2)
carev (mV)
m_inf
tau_m (ms)
alph1 (/ms)
alph2 (/ms)
KK
phi_m
phi_h
}
BREAKPOINT {
SOLVE states METHOD runge
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
ica = gcabar * m*m*m*h * (v - carev)
}
DERIVATIVE states {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
h' = alph1 * ( (1-h-d) - KK * h )
d' = alph2 * ( KK * (1-h-d) - d )
}
UNITSOFF
INITIAL {
evaluate_fct(v)
m = m_inf
h = 1./(1. + KK + KK*KK)
d = KK*KK/(1 + KK + KK*KK)
:
: Transformation to 36 deg assuming Q10 of 5 and 3 for m and h
: (as in Coulter et al., J Physiol 414: 587, 1989)
:
phi_m = 5.0 ^ ((celsius-24)/10)
phi_h = 3.0 ^ ((celsius-24)/10)
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL tau2
:
: The kinetic model of Wang et al. was constructed from the
: data of Coulter et al., J Physiol 414: 587, 1989 which were
: obtained at 24 dec C. Transformation to 36 deg is made
: assuming Q10 of 5 and 3 for m and h, according to the
: data of Coulter et al. The sigmoids and time constants
: were shifted of 2 mV to account for screening charge.
:
m_inf = 1 / ( 1 + exp(-(v+shift+63)/7.8) )
tau_m = m_inf * ( 1.7 + exp(-(v+shift+28.8)/13.5) ) / phi_m
alph1 = phi_h * exp(-(v+shift+160.3)/17.8)
KK = sqrt( 0.25 + exp((v+shift+83.5)/6.3) ) - 0.5
tau2 = 240.0 / ( 1 + exp((v+shift+37.4)/30) ) / phi_h
alph2 = 1 / ( tau2 * (KK+1) )
}
UNITSON