: $Id: vecst.mod,v 1.66 2001/05/15 14:54:49 billl Exp $
:* COMMENT
COMMENT
randwd randomly chooses n bits to set to 1
hamming v.hamming(v1) is hamming distance between 2 vecs
flipbits v.flipbits(scratch,num) flips num rand chosen bits
flipbalbits v.flipbalbits(scratch,num) balanced flipping
vpr v.vpr prints out vector as 1 (x[i]>0) or 0 (x[i]<=0)
thresh turns analog vec to BVBASE,1 vec separating at thresh (scalar or vec)
triplet return location of a triplet in a vector
onoff turns state vec on or off depending on values in other vecs
bpeval used by backprop: vo=outp*(1-outp)*del
w like where but sets chosen nums // modified from .wh in 1.23
xing determines where vector crosses in a positive direction (destructive)
xzero count 0 crossings by putting in a 1 or -1
indset(ind,val) sets spots indexed by ind to val
ismono([arg]) checks if a vector is monotonically increaseing (-1 decreasing)
count(num) count the number of nums in vec
scr.fewind(ind,vec1,vec2[,vec3,vec4]) // uses ind as index into other vecs
scr.nind(ind,vec1,vec2[,vec3,vec4]) // uses ind to elim elems in other vecs
vdest.intrp(flag) // interpolate numbers replacing numbers given as flag
v.insct(v1,v2) // return v1 intersect v2
v.cvlv(v1,v2) // convolve v1 with v2
fac not vec related - returns factorial
logfac not vec related - returns log factorial
v2d copy into a double block
d2v copy out of a double block NB: same as vec.from_double()
frd perform an fread
ENDCOMMENT
NEURON {
SUFFIX nothing
GLOBAL BVBASE : bit vector base number (typically 0 or -1)
}
PARAMETER {
BVBASE = -1.
}
VERBATIM
#include <stdlib.h>
#include <math.h>
#include <float.h> /* contains MAXLONG */
#ifndef NRN_VERSION_GTEQ_8_2_0
extern double* hoc_pgetarg();
extern double hoc_call_func(Symbol*, int narg);
extern FILE* hoc_obj_file_arg(int narg);
extern void vector_resize();
extern int vector_instance_px();
extern void* vector_arg();
#endif
/* some machines do not have drand48 and srand48 so use the implementation
at the end of this file */
double my_drand48();
void my_srand48(long seedval);
#undef drand48
#undef srand48
#define drand48 my_drand48
#define srand48 my_srand48
ENDVERBATIM
:* v1.slope(num) does a linear regression to find the slope, assuming num=timestep of vector
VERBATIM
static double slope(void* vv) {
int i, n;
double *x, *y;
double timestep, sigxy, sigx, sigy, sigx2;
/* how to get the instance data */
n = vector_instance_px(vv, &y);
if(ifarg(1)) {
timestep = *getarg(1);
} else { printf("You must supply a timestep\n"); return 0; }
sigxy= sigx= sigy= sigx2=0; // initialize these
x = (double *) malloc(sizeof(double)*n);
for(i=0; i<n; i++) {
x[i] = timestep*i;
sigxy += x[i] * y[i];
sigx += x[i];
sigy += y[i];
sigx2 += x[i]*x[i];
}
return (n*sigxy - sigx*sigy)/(n*sigx2 - sigx*sigx);
}
unsigned int __uitrunc(double x) {
return (unsigned)(int)(x);
}
ENDVERBATIM
:* v1.vslope(v2) does a linear regression, using v2 as the x-coords
VERBATIM
static double vslope(void* vv) {
int i, n;
double *x, *y;
double timestep, sigxy, sigx, sigy, sigx2;
/* how to get the instance data */
n = vector_instance_px(vv, &y);
if(ifarg(1)) {
if(vector_arg_px(1, &x) != n ) {
hoc_execerror("Vector size doesn't match.", 0);
}
sigxy= sigx= sigy= sigx2=0; // initialize these
for(i=0; i<n; i++) {
sigxy += x[i] * y[i];
sigx += x[i];
sigy += y[i];
sigx2 += x[i]*x[i];
}
}
return (n*sigxy - sigx*sigy)/(n*sigx2 - sigx*sigx);
}
ENDVERBATIM
:* v1.stats(num) does a linear regression, assuming num=timestep of vector
VERBATIM
static double stats(void* vv) {
int i, n;
double *x, *y;
double timestep, sigxy, sigx, sigy, sigx2, sigy2;
double r, m, b;
/* how to get the instance data */
n = vector_instance_px(vv, &y);
if(ifarg(1)) {
timestep = *getarg(1);
} else { printf("You must supply a timestep\n"); return 0; }
sigxy= sigx= sigy= sigx2=sigy2= 0; // initialize these
x = (double *) malloc(sizeof(double)*n);
for(i=0; i<n; i++) {
x[i] = timestep*i;
sigxy += x[i] * y[i];
sigx += x[i];
sigy += y[i];
sigx2 += x[i]*x[i];
sigy2 += y[i]*y[i];
}
m = (n*sigxy - sigx*sigy)/(n*sigx2 - sigx*sigx);
b = (sigy*sigx2 - sigx*sigxy)/(n*sigx2 - sigx*sigx);
r = (n*sigxy - sigx*sigy)/(sqrt(n*sigx2-sigx*sigx) * sqrt(n*sigy2-sigy*sigy));
printf("Examined %d data points\n", n);
printf("slope = %f\n", m);
printf("intercept = %f\n", b);
printf("R = %f\n", r);
printf("R-squared = %f\n", r*r);
return 1;
}
ENDVERBATIM
:* v1.vstats(v2) does a linear regression, using v2 as the x-coords
VERBATIM
static double vstats(void* vv) {
int i, n;
double *x, *y;
double timestep, sigxy, sigx, sigy, sigx2, sigy2;
double r, m, b;
/* how to get the instance data */
n = vector_instance_px(vv, &y);
if(ifarg(1)) {
if(vector_arg_px(1, &x) != n ) {
hoc_execerror("Vector size doesn't match.", 0);
}
sigxy= sigx= sigy= sigx2=sigy2=0; // initialize these
for(i=0; i<n; i++) {
sigxy += x[i] * y[i];
sigx += x[i];
sigy += y[i];
sigx2 += x[i]*x[i];
sigy2 += y[i]*y[i];
}
m = (n*sigxy - sigx*sigy)/(n*sigx2 - sigx*sigx);
b = (sigy*sigx2 - sigx*sigxy)/(n*sigx2 - sigx*sigx);
r = (n*sigxy - sigx*sigy)/(sqrt(n*sigx2-sigx*sigx) * sqrt(n*sigy2-sigy*sigy));
printf("Examined %d data points\n", n);
printf("slope = %f\n", m);
printf("intercept = %f\n", b);
printf("R = %f\n", r);
printf("R-squared = %f\n", r*r);
return 1;
} else {
printf("You must supply an x vector!\n");
return 0;
}
}
ENDVERBATIM
:* v1.randwd(num[,v2]) will randomly flip num bits from BVBASE to 1
: does v1.fill(BVBASE); optionally fill v2 with the indices
VERBATIM
static double randwd(void* vv) {
int i, ii, jj, nx, ny, flip, flag;
double* x, *y;
/* how to get the instance data */
nx = vector_instance_px(vv, &x);
flip = (int) *getarg(1);
if (ifarg(2)) { /* write a diff vector to z */
flag = 1; ny = vector_arg_px(2, &y);
if (ny!=flip) { hoc_execerror("Opt vector must be size for # of flips", 0); }
} else { flag = 0; }
if (flip>=nx) { hoc_execerror("# of flips exceeds (or ==) vector size", 0); }
for (i=0; i < nx; i++) { x[i] = BVBASE; }
for (i=0,jj=0; i < flip; i++) { /* flip these bits */
ii = (int) ((nx+1)*drand48());
if (x[ii]==BVBASE) {
x[ii] = 1.;
if (flag) { y[jj] = ii; jj++; }
} else {
i--;
}
}
return flip;
}
ENDVERBATIM
:* v1.hamming(v2[,v3]) compares v1 and v2 for matches, v3 gives diff vector
VERBATIM
static double hamming(void* vv) {
int i, nx, ny, nz, prflag;
double* x, *y, *z,sum;
sum = 0.;
nx = vector_instance_px(vv, &x);
ny = vector_arg_px(1, &y);
if (ifarg(2)) { /* write a diff vector to z */
prflag = 1; nz = vector_arg_px(2, &z);
} else { prflag = 0; }
if (nx!=ny || (prflag && nx!=nz)) {
hoc_execerror("Vectors must be same size", 0);
}
for (i=0; i < nx; ++i) {
if (x[i] != y[i]) { sum++;
if (prflag) { z[i] = 1.; }
} else if (prflag) { z[i] = 0.; }
}
return sum;
}
ENDVERBATIM
:* v1.indset(ind,x[,y]) sets indexed values to x and other values to optional y
VERBATIM
static double indset(void* vv) {
int i, nx, ny, nz, flag;
double* x, *y, *z, val, val2 ;
nx = vector_instance_px(vv, &x);
ny = vector_arg_px(1, &y);
if (hoc_is_object_arg(2)) {
flag=1;
nz = vector_arg_px(2, &z);
if (ny!=nz) { hoc_execerror("v.indset: Vector sizes don't match.", 0); }
} else { flag=0; val=*getarg(2); }
if (ifarg(3)) {
val2 = *getarg(3);
for (i=0; i<nx; i++) { x[i]=val2; }
}
for (i=0; i<ny; i++) {
if (y[i] > nx) { hoc_execerror("v.indset: Index exceeds vector size", 0); }
if (flag) x[(int)y[i]]=z[i]; else x[(int)y[i]]=val;
}
return i;
}
ENDVERBATIM
VERBATIM
/* Maintain parallel int vector to avoid slowness of repeated casts */
static int scrsz=0;
static int *scr;
ENDVERBATIM
:* tmp.fewind(ind,vec1,vec2[,vec3,vec4,...])
: picks out numbers from multiple vectors using index ind
VERBATIM
static double fewind(void* vv) {
int i, j, nx, ni, nv[10], num;
double *x, *ind, *vvo[10];
nx = vector_instance_px(vv, &x);
for (i=0;ifarg(i);i++);
if (i>9) hoc_execerror("ERR: fewind can only handle 9 vectors", 0);
num = i-2; /* number of vectors to be picked apart */
for (i=0;i<num;i++) {
nv[i] = vector_arg_px(i+2, &vvo[i]);
if (nx!=nv[i]) { printf("fewind ERR %d %d %d\n",i,nx,nv[i]);
hoc_execerror("Vectors must all be same size: ", 0); }
}
ni = vector_arg_px(1, &ind);
if (ni>scrsz) {
if (scrsz>0) { free(scr); scr=(int *)NULL; }
scrsz=ni+10000;
scr=(int *)ecalloc(scrsz, sizeof(int));
}
for (i=0;i<ni;i++) scr[i]=(int)ind[i]; /* copy into integer array */
for (j=0;j<num;j++) {
for (i=0;i<ni;i++) x[i]=vvo[j][scr[i]];
for (i=0;i<ni;i++) vvo[j][i]=x[i];
vv=vector_arg(j+2); vector_resize((IvocVect*)vv, ni);
}
return ni;
}
ENDVERBATIM
:* ind.insct(ind,vec1,vec2)
: picks out numbers from multiple vectors using index ind
VERBATIM
static double insct(void* vv) {
int i, j, k, nx, nv1, nv2;
double *x, *v1, *v2;
nx = vector_instance_px(vv, &x);
nv1 = vector_arg_px(1, &v1);
nv2 = vector_arg_px(2, &v2);
for (i=0,k=0;i<nv1&&k<nx;i++) for (j=0;j<nv2&&k<nx;j++) if (v1[i]==v2[j]) x[k++]=v1[i];
if (k==nx) {
printf("\tinsct WARNING: ran out of room: %d\n",k);
for (;i<nv1;i++,j=0) for (;j<nv2;j++) if (v1[i]==v2[j]) k++;
} else { vector_resize((IvocVect*)vv, k); } /* can't resize to make bigger */
return (double)k;
}
ENDVERBATIM
:* vdest.cvlv(vsrc,vfilt)
: convolution
VERBATIM
static double cvlv(void* vv) {
int i, j, k, nx, nsrc, nfilt;
double *x, *src, *filt, sum, lpad, rpad;
nx = vector_instance_px(vv, &x);
nsrc = vector_arg_px(1, &src);
nfilt = vector_arg_px(2, &filt);
if (nx!=nsrc) { hoc_execerror("Vectors not same size: ", 0); }
if (nfilt>nsrc) { hoc_execerror("Filter bigger than source ", 0); }
for (i=0;i<nx;i++) {
x[i]=0.0;
for (j=0,k=i-(int)(nfilt/2);j<nfilt;j++,k++) {
if (k>0 && k<nsrc-1) x[i]+=filt[j]*src[k];
}
}
return 0.;
}
ENDVERBATIM
:* vdest.intrp(flag)
: interpolate numbers replacing numbers given as flag
VERBATIM
static double intrp(void* vv) {
int i, la, lb, nx;
double *x, fl, a, b;
nx = vector_instance_px(vv, &x);
fl = *getarg(1);
i=0; a=x[0]; la=0;
if (a==fl) a=0;
while (i<nx-1) {
for (i=la+1;x[i]==fl && i<nx-1; i++) ; /* find the next one */
b=x[i]; lb=i;
for (i=la+1; i<lb; i++) x[i]= a + (b-a)/(lb-la)*(i-la);
a=b; la=lb;
}
return 0.;
}
ENDVERBATIM
:* tmp.nind(ind,vec1,vec2[,vec3,vec4,...])
: picks out numbers not in ind from multiple vectors
: ind must be sorted
VERBATIM
static double nind(void* vv) {
int i, j, k, m, nx, ni, nv[10], num, c, last;
double *x, *ind, *vvo[10];
nx = vector_instance_px(vv, &x);
for (i=0;ifarg(i);i++);
if (i>9) hoc_execerror("ERR: nind can only handle 9 vectors", 0);
num = i-2; /* number of vectors to be picked apart */
for (i=0;i<num;i++) {
nv[i] = vector_arg_px(i+2, &vvo[i]);
if (nx!=nv[i]) { printf("nind ERR %d %d %d\n",i,nx,nv[i]);
hoc_execerror("Vectors must all be same size: ", 0); }
}
ni = vector_arg_px(1, &ind);
c = nx-ni; /* the elems indexed are to be eliminated */
if (ni>scrsz) {
if (scrsz>0) { free(scr); scr=(int *)NULL; }
scrsz=ni+10000;
scr=(int *)ecalloc(scrsz, sizeof(int));
}
for (i=0,last=-1;i<ni;i++) {
scr[i]=(int)ind[i]; /* copy into integer array */
if (scr[i]<0 || scr[i]>=nx) hoc_execerror("nind(): Index out of bounds", 0);
if (scr[i]<=last) hoc_execerror("nind(): indices should mono increase", 0);
last=scr[i];
}
for (j=0;j<num;j++) { /* each output vec */
for (i=0,last=-1,m=0;i<ni;i++) { /* the indices of ind */
for (k=last+1;k<scr[i];k++) { x[m++]=vvo[j][k]; }
last=scr[i];
}
for (k=last+1;k<nx;k++,m++) { x[m]=vvo[j][k]; }
for (i=0;i<c;i++) vvo[j][i]=x[i];
vv=vector_arg(j+2); vector_resize((IvocVect*)vv, c);
}
return c;
}
ENDVERBATIM
:* v1.flipbits(scratch,num) flips num bits
: uses scratch vector of same size as v1 to make sure doesn't flip same bit twice
VERBATIM
static double flipbits(void* vv) {
int i, nx, ny, flip, ii;
double* x, *y;
nx = vector_instance_px(vv, &x);
ny = vector_arg_px(1, &y);
flip = (int)*getarg(2);
if (nx != ny) {
hoc_execerror("Scratch vector must be same size", 0);
}
for (i=0; i<nx; i++) { y[i]=x[i]; } /* copy */
for (i=0; i < flip; i++) { /* flip these bits */
ii = (int) ((nx+1)*drand48());
if (x[ii]==y[ii]) { /* hasn't been touched */
x[ii]=((x[ii]==1.)?BVBASE:1.);
} else {
i--; /* do it again */
}
}
return flip;
}
ENDVERBATIM
:* v1.flipbalbits(scratch,num) flips num bits making sure to balance every 1
: flip with a 0 flip to preserve initial power
: uses scratch vector of same size as v1 to make sure doesn't flip same bit twice
VERBATIM
static double flipbalbits(void* vv) {
int i, nx, ny, flip, ii, next;
double* x, *y;
nx = vector_instance_px(vv, &x);
ny = vector_arg_px(1, &y);
flip = (int)*getarg(2);
if (nx != ny) {
hoc_execerror("Scratch vector must be same size", 0);
}
for (i=0; i<nx; i++) { y[i]=x[i]; } /* copy */
next = 1; /* start with 1 */
for (i=0; i < flip;) { /* flip these bits */
ii = (int) ((nx+1)*drand48());
if (x[ii]==y[ii] && y[ii]==next) { /* hasn't been touched */
next=x[ii]=((x[ii]==1.)?BVBASE:1.);
i++;
}
}
return flip;
}
ENDVERBATIM
:* v1.vpr() prints out neatly
VERBATIM
static double vpr(void* vv) {
int i, nx;
double* x;
FILE* f;
nx = vector_instance_px(vv, &x);
if (ifarg(1)) {
f = hoc_obj_file_arg(1);
for (i=0; i<nx; i++) {
if (x[i]>BVBASE) { fprintf(f,"%d",1);
} else { fprintf(f,"%d",0); }
}
fprintf(f,"\n");
} else {
for (i=0; i<nx; i++) {
if (x[i]>BVBASE) { printf("%d",1);
} else { printf("%d",0); }
}
printf("\n");
}
return 1.;
}
ENDVERBATIM
:* v1.thresh() threshold above and below thresh
VERBATIM
static double thresh(void* vv) {
int i, nx, ny, cnt;
double *x, *y, th;
nx = vector_instance_px(vv, &x);
cnt=0;
if (hoc_is_object_arg(1)) {
ny = vector_arg_px(1, &y); th=0;
if (nx!=ny) { hoc_execerror("Vector sizes don't match in thresh.", 0); }
for (i=0; i<nx; i++) { if (x[i]>=y[i]) { x[i]= 1.; cnt++;} else { x[i]= BVBASE; } }
} else { th = *getarg(1);
for (i=0; i<nx; i++) { if (x[i] >= th) { x[i]= 1.; cnt++;} else { x[i]= BVBASE; } }
}
return cnt;
}
ENDVERBATIM
:* v1.triplet() return location of a triplet
VERBATIM
static double triplet(void* vv) {
int i, nx;
double *x, *y, a, b;
nx = vector_instance_px(vv, &x);
a = *getarg(1); b = *getarg(2);
for (i=0; i<nx; i+=3) if (x[i]==a&&x[i+1]==b) break;
if (i<nx) return (double)i; else return -1.;
}
ENDVERBATIM
:* state.onoff(volts,OBon,thresh,dur,refr)
: looks at volts vector to decide if have rearch threshold thresh
: OBon takes account of burst dur and refractory period
VERBATIM
static double onoff(void* vv) {
int i, j, n, nv, non, nt, nd, nr, num;
double *st, *vol, *obon, *thr, *dur, *refr;
n = vector_instance_px(vv, &st);
nv = vector_arg_px(1, &vol);
non = vector_arg_px(2, &obon);
nt = vector_arg_px(3, &thr);
nd = vector_arg_px(4, &dur);
nr = vector_arg_px(5, &refr);
if (n!=nv||n!=non||n!=nt||n!=nd||n!=nr) {
hoc_execerror("v.onoff: vectors not all same size", 0); }
for (i=0,num=0;i<n;i++) {
obon[i]--;
if (obon[i]>0.) { st[i]=1.; continue; } /* cell must fire */
if (vol[i]>=thr[i] && obon[i]<= -refr[i]) { /* past refractory period */
st[i]=1.; obon[i]=dur[i]; num++;
} else { st[i]= BVBASE; }
}
return num;
}
ENDVERBATIM
:* vo.bpeval(outp,del)
: service routine for back-prop: vo=outp*(1-outp)*del
VERBATIM
static double bpeval(void* vv) {
int i, n, no, nd, flag=0;
double add,div;
double *vo, *outp, *del;
n = vector_instance_px(vv, &vo);
no = vector_arg_px(1, &outp);
nd = vector_arg_px(2, &del);
if (ifarg(3) && ifarg(4)) { add= *getarg(3); div= *getarg(4); flag=1;}
if (n!=no||n!=nd) hoc_execerror("v.bpeval: vectors not all same size", 0);
if (flag) {
for (i=0;i<n;i++) vo[i]=((outp[i]+add)/div)*(1.-1.*((outp[i]+add)/div))*del[i];
} else {
for (i=0;i<n;i++) vo[i]=outp[i]*(1.-1.*outp[i])*del[i];
}
return 0.;
}
ENDVERBATIM
:* v1.sedit() string edit
VERBATIM
static double sedit(void* vv) {
int i, n, ni, f=0;
double *x, *ind, th, val;
Symbol* s; char *op;
op = gargstr(1);
n = vector_instance_px(vv, &x);
#if defined(MSWIN)
/* not available prior to version 5.3 and not used in this simulation */
#else
sprintf(op,"hello world");
#endif
return (double)n;
}
ENDVERBATIM
:* v1.w() a .where that sets elements in source vector
VERBATIM
static double w(void* vv) {
int i, n, ni, f=0;
double *x, *ind, th, val;
Symbol* s; char *op;
if (! ifarg(1)) {
printf("v1.w('op',thresh[,val,v2])\n");
printf(" a .where that sets elements in v1 to val (default 0), if v2 => only look at these elements\n");
printf(" 'op'=='function name' is a .apply targeted by v2 called as func(x[i],thresh,val)\n");
return -1.;
}
op = gargstr(1);
n = vector_instance_px(vv, &x);
th = *getarg(2);
if (ifarg(3)) { val = *getarg(3); } else { val = 0.0; }
if (ifarg(4)) {ni = vector_arg_px(4, &ind); f=1;} // just look at the spots indexed
if (!strcmp(op,"==")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]==th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]==th) { x[i] = val;}}}
} else if (!strcmp(op,"!=")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]!=th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]!=th) { x[i] = val;}}}
} else if (!strcmp(op,">")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]>th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]>th) { x[i] = val;}}}
} else if (!strcmp(op,"<")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]<th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]<th) { x[i] = val;}}}
} else if (!strcmp(op,">=")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]>=th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]>=th) { x[i] = val;}}}
} else if (!strcmp(op,"<=")) {
if (f==1) {for (i=0; i<ni;i++) {if (x[(int)ind[i]]<=th) { x[(int)ind[i]] = val;}}
} else {for (i=0; i<n; i++) {if (x[i]<=th) { x[i] = val;}}}
} else if ((s=hoc_lookup(op))) { // same as .apply but only does indexed ones
if (f==1) {for (i=0; i<ni;i++) {
hoc_pushx(x[(int)ind[i]]); hoc_pushx(th); hoc_pushx(val);
x[(int)ind[i]]=hoc_call_func(s, 3);}
} else {for (i=0; i<n;i++) {hoc_pushx(x[i]); hoc_pushx(th); hoc_pushx(val);
x[i]=hoc_call_func(s, 3);}}
}
return (double)i;
}
ENDVERBATIM
:* v1.xing() a .where that looks for threshold crossings and then doesn't pick another till
: comes back down again
VERBATIM
static double xing(void* vv) {
int i, n, f=0;
double *x, th;
n = vector_instance_px(vv, &x);
th = *getarg(1);
for (i=0; i<n; i++) {
if (x[i]>th) { /* ? passing thresh */
if (f==0) { x[i]=1.; f=1; } else { x[i]=0.; }
} else { /* below thresh */
x[i]=0.;
if (f==1) { f=0; } /* just passed going down */
}
}
return (double)i;
}
ENDVERBATIM
:* v1.xzero() a .where that looks for zero crossings
VERBATIM
static double xzero(void* vv) {
int i, n, nv, up;
double *x, *vc, th, cnt=0.;
n = vector_instance_px(vv, &x);
nv = vector_arg_px(1, &vc);
if (ifarg(2)) { th = *getarg(2); } else { th=0.0;}
if (vc[0]<th) up=0; else up=1; /* F or T */
if (nv!=n) hoc_execerror("Vector size doesn't match.", 0);
for (i=0; i<nv; i++) {
x[i]=0.;
if (up) { /* look for passing down */
if (vc[i]<th) { x[i]=-1; up=0; cnt++; }
} else if (vc[i]>th) { up=x[i]=1; cnt++; }
}
return cnt;
}
ENDVERBATIM
:* v1.sw(FROM,TO) switchs all FROMs to TO
VERBATIM
static double sw(void* vv) {
int i, n;
double *x, fr, to;
n = vector_instance_px(vv, &x);
fr = *getarg(1);
to = *getarg(2);
for (i=0; i<n; i++) {
if (x[i]==fr) { x[i] = to;}
}
return n;
}
ENDVERBATIM
:* v.v2d(&x) copies from vector to double area -- a seg error waiting to happen
VERBATIM
static double v2d(void* vv) {
int i, n, num;
double *x, *to;
n = vector_instance_px(vv, &x);
to = hoc_pgetarg(1);
if (ifarg(2)) { num = *getarg(2); } else { num=-1;}
if (num>-1 && num!=n) { hoc_execerror("Vector size doesn't match.", 0); }
for (i=0; i<n; i++) {to[i] = x[i];}
return n;
}
ENDVERBATIM
:* v.d2v(&x) copies from double area to vector -- a seg error waiting to happen
VERBATIM
static double d2v(void* vv) {
int i, n, num;
double *x, *fr;
n = vector_instance_px(vv, &x);
fr = hoc_pgetarg(1);
if (ifarg(2)) { num = *getarg(2); } else { num=-1;}
if (num>-1 && num!=n) { hoc_execerror("Vector size doesn't match.", 0); }
for (i=0; i<n; i++) {x[i] = fr[i];}
return n;
}
ENDVERBATIM
:* v1.ismono([arg]) asks whether is monotonically increasing, with arg==-1 - decreasing
: with arg==0 - all same
VERBATIM
static double ismono(void* vv) {
int i, n, flag;
double *x,last;
n = vector_instance_px(vv, &x);
if (ifarg(1)) { flag = (int)*getarg(1); } else { flag = 1; }
last=x[0];
if (flag==1) {
for (i=1; i<n && x[i]>=last; i++) last=x[i];
} else if (flag==-1) {
for (i=1; i<n && x[i]<=last; i++) last=x[i];
} else if (flag==0) {
for (i=1; i<n && x[i]==last; i++) ;
}
if (i==n) return 1.; else return 0.;
}
ENDVERBATIM
:* v1.count(num) returns number of instances of num
VERBATIM
static double count(void* vv) {
int i, n, cnt=0;
double *x,num;
n = vector_instance_px(vv, &x);
num = *getarg(1);
for (i=0; i<n; i++) if (x[i]==num) cnt++;
return cnt;
}
ENDVERBATIM
:* fac (n)
: from numerical recipes p.214
FUNCTION fac (n) {
VERBATIM {
static int ntop=4;
static double a[101]={1.,1.,2.,6.,24.};
static double cof[6]={76.18009173,-86.50532033,24.01409822,
-1.231739516,0.120858003e-2,-0.536382e-5};
int j,n;
n = (int)_ln;
if (n<0) { hoc_execerror("No negative numbers ", 0); }
if (n>100) { /* gamma function */
double x,tmp,ser;
x = _ln;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.0;
for (j=0;j<=5;j++) {
x += 1.0;
ser += cof[j]/x;
}
return exp(-tmp+log(2.50662827465*ser));
} else {
while (ntop<n) {
j=ntop++;
a[ntop]=a[j]*ntop;
}
return a[n];
}
}
ENDVERBATIM
}
:* logfac (n)
: from numerical recipes p.214
FUNCTION logfac (n) {
VERBATIM {
static int ntop=4;
static double a[101]={1.,1.,2.,6.,24.};
static double cof[6]={76.18009173,-86.50532033,24.01409822,
-1.231739516,0.120858003e-2,-0.536382e-5};
int j,n;
n = (int)_ln;
if (n<0) { hoc_execerror("No negative numbers ", 0); }
if (n>100) { /* gamma function */
double x,tmp,ser;
x = _ln;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.0;
for (j=0;j<=5;j++) {
x += 1.0;
ser += cof[j]/x;
}
return (-tmp+log(2.50662827465*ser));
} else {
while (ntop<n) {
j=ntop++;
a[ntop]=a[j]*ntop;
}
return log(a[n]);
}
}
ENDVERBATIM
}
:* v1.frd(file,num,size) perform an fread
VERBATIM
static double frd(void* vv) {
int i, nx, num, size;
char *xf;
FILE* f;
double* x;
nx = vector_instance_px(vv, &x);
#if defined(MSWIN)
/* not available prior to version 5.3 and not used in this simulation */
#else
f = hoc_obj_file_arg(1);
#endif
num = (int)*getarg(2);
size = (int)*getarg(3);
xf = (char *)malloc(num * size);
if (num!=nx) { hoc_execerror("Correct vector size ", 0); }
fread(xf, num, size, f);
for (i=0;i<num;++i) x[i] = (double)xf[i];
return 0.;
}
ENDVERBATIM
:* PROCEDURE install_vecst()
PROCEDURE install_vecst() {
VERBATIM
install_vector_method("slope", slope);
install_vector_method("vslope", vslope);
install_vector_method("stats", stats);
install_vector_method("vstats", vstats);
install_vector_method("indset", indset);
install_vector_method("randwd", randwd);
install_vector_method("hamming", hamming);
install_vector_method("flipbits", flipbits);
install_vector_method("frd", frd);
install_vector_method("flipbalbits", flipbalbits);
install_vector_method("vpr", vpr);
install_vector_method("thresh", thresh);
install_vector_method("triplet", triplet);
install_vector_method("onoff", onoff);
install_vector_method("bpeval", bpeval);
install_vector_method("w", w);
install_vector_method("sedit", sedit);
install_vector_method("xing", xing);
install_vector_method("cvlv", cvlv);
install_vector_method("intrp", intrp);
install_vector_method("xzero", xzero);
install_vector_method("sw", sw);
install_vector_method("ismono", ismono);
install_vector_method("count", count);
install_vector_method("fewind", fewind);
install_vector_method("nind", nind);
install_vector_method("insct", insct);
install_vector_method("d2v", d2v);
install_vector_method("v2d", v2d);
ENDVERBATIM
}
: unable to get the drand here to recognize the same fseed used in rand
PROCEDURE vseed(seed) {
VERBATIM
srand48((unsigned)_lseed);
ENDVERBATIM
}
VERBATIM
/* http://www.mit.edu/afs/athena/activity/c/cgs/src/math/drand48/ */
/*
Michael Hines removed all code not used by srand48 and drand48,
the code handling non-floating point processor machines, and the
pdp-11 fragment. Global names have my_ prefix added.
*/
/* @(#)drand48.c 2.2 */
/*LINTLIBRARY*/
/*
* drand48, etc. pseudo-random number generator
* This implementation assumes unsigned short integers of at least
* 16 bits, long integers of at least 32 bits, and ignores
* overflows on adding or multiplying two unsigned integers.
* Two's-complement representation is assumed in a few places.
* Some extra masking is done if unsigneds are exactly 16 bits
* or longs are exactly 32 bits, but so what?
* An assembly-language implementation would run significantly faster.
*/
#define N 16
#define MASK ((unsigned)(1 << (N - 1)) + (1 << (N - 1)) - 1)
#define LOW(x) ((unsigned)(x) & MASK)
#define HIGH(x) LOW((x) >> N)
#define MUL(x, y, z) { long l = (long)(x) * (long)(y); \
(z)[0] = LOW(l); (z)[1] = HIGH(l); }
#define CARRY(x, y) ((long)(x) + (long)(y) > MASK)
#define ADDEQU(x, y, z) (z = CARRY(x, (y)), x = LOW(x + (y)))
#define X0 0x330E
#define X1 0xABCD
#define X2 0x1234
#define A0 0xE66D
#define A1 0xDEEC
#define A2 0x5
#define C 0xB
#define SET3(x, x0, x1, x2) ((x)[0] = (x0), (x)[1] = (x1), (x)[2] = (x2))
#define SEED(x0, x1, x2) (SET3(x, x0, x1, x2), SET3(a, A0, A1, A2), c = C)
static unsigned x[3] = { X0, X1, X2 }, a[3] = { A0, A1, A2 }, c = C;
static unsigned short lastx[3];
static void next();
double
my_drand48()
{
static double two16m = 1.0 / (1L << N);
next();
return (two16m * (two16m * (two16m * x[0] + x[1]) + x[2]));
}
static void
next()
{
unsigned p[2], q[2], r[2], carry0, carry1;
MUL(a[0], x[0], p);
ADDEQU(p[0], c, carry0);
ADDEQU(p[1], carry0, carry1);
MUL(a[0], x[1], q);
ADDEQU(p[1], q[0], carry0);
MUL(a[1], x[0], r);
x[2] = LOW(carry0 + carry1 + CARRY(p[1], r[0]) + q[1] + r[1] +
a[0] * x[2] + a[1] * x[1] + a[2] * x[0]);
x[1] = LOW(p[1] + r[0]);
x[0] = LOW(p[0]);
}
void my_srand48(long seedval)
{
SEED(X0, LOW(seedval), HIGH(seedval));
}
#if 0
#ifdef DRIVER
/*
This should print the sequences of integers in Tables 2
and 1 of the TM:
1623, 3442, 1447, 1829, 1305, ...
657EB7255101, D72A0C966378, 5A743C062A23, ...
*/
#include <stdio.h>
main()
{
int i;
for (i = 0; i < 80; i++) {
printf("%4d ", (int)(4096 * my_drand48()));
printf("%.4X%.4X%.4X\n", x[2], x[1], x[0]);
}
}
#endif
#endif
ENDVERBATIM