load_file("nrngui.hoc")
cvode_active(1)
dist=1
rel=0.3
rel1=0.3
rel2=0.3
numaxon=1
numsoma=1
numbasal=61
numapical=53
numtrunk=42
pesi = 3
double vett[pesi]
xopen("geoc62564.hoc") // geometry file
xopen("fixnseg.hoc")
Rm = 28000
RmDend = Rm
RmSoma = Rm
RmAx = Rm
Cm = 1
CmSoma= Cm
CmAx = Cm
CmDend = Cm
RaAll= 150
RaSoma=150
RaAx = 50
Vrest = -65
dt = 0.1
gna = .025
AXONM = 5
gkdr = 0.01
celsius = 35.0
KMULT = 0.03
KMULTP = 0.03
ghd=0.00005
objref g, b,c, stim, outfile,vbox
objref p, s[3], rsyn[3], nc[3], sref, blist[numtrunk]
strdef filename, dend, trunk
outfile = new File()
forsec "axon" {insert pas e_pas=Vrest g_pas = 1/RmAx Ra=RaAx cm=CmAx}
forsec "soma" {insert pas e_pas=Vrest g_pas = 1/RmSoma Ra=RaSoma cm=CmSoma}
forsec "dendrite"{insert pas e_pas=Vrest g_pas = 1/RmDend Ra=RaAll cm=CmDend}
forsec "user5" {insert pas e_pas=Vrest g_pas = 1/RmDend Ra=RaAll cm=CmDend}
access soma
freq=50
geom_nseg()
tot=0
forall {tot=tot+nseg}
distance()
maxdist=0
forsec "user5" for(x) {if (distance(x)>maxdist) {maxdist=distance(x)}}
print "total # of segments (50Hz): ",tot, " max path distance: ", maxdist
/*****************lettura da file********************/
ropen("sinapsi_weights.txt")
for i=0, pesi-1 {
vett[i]=fscan()*1.e-3
}
/******************** fine **********************/
if (vett[2]==8.e-3) {vett[2]=vett[2]-2.e-3}
vett[0]=(vett[0])+(20*1.e-3)
vett[1]=(vett[1])+(30*1.e-3)
vett[2]=(vett[2])+(41*1.e-3)
ropen()
tstim=1
strength = 1 /*namps*/
tstop=200
vbox = new VBox()
vbox.intercept(1)
g = new Graph()
g.size(0,tstop,-70,30)
g.addvar("soma[0].v(0.5)",1,1,2*tstop,0,2)
g.color(1)
g.label("")
g.label("Soma")
g.label(3, 3, "geoc62564", 1, 2, -1, -2, 8)
g.xaxis(1)
xpanel("")
xbutton("runm - refresh ", "runm()")
xpanel()
vbox.intercept(0)
vbox.map("geoc62564",1,530,-100,1)
b = new VBox()
b.intercept(1)
p = new PlotShape()
p.exec_menu("Shape Plot")
p.size(30,30,0,500)
p.label(0,0,"geoc62564")
p.variable("v")
p.show(0)
b.intercept(0)
b.map("geoc62564",1100, 320, 200, 400)
apical_dendrite[21] {
print distance(rel)
s[0] = new NetStims(rel)
s[0].interval=0.2
s[0].number = 1
s[0].start=100
s[0].noise=0
s[0].seed(987651119)
rsyn[0] = new Exp2Syn(rel)
rsyn[0].tau1 = 1
rsyn[0].tau2 = 5
rsyn[0].e=0
nc[0] = new NetCon(s[0],rsyn[0],0,0,vett[0])
}
apical_dendrite[28] {
print distance(rel1)
s[1] = new NetStims(rel1)
s[1].interval=0.2
s[1].number = 1
s[1].start=100
s[1].noise=0
s[1].seed(987651119)
rsyn[1] = new Exp2Syn(rel1)
rsyn[1].tau1 = 1
rsyn[1].tau2 = 5
rsyn[1].e=0
nc[1] = new NetCon(s[1],rsyn[1],0,0,vett[1])
}
apical_dendrite[30] {
print distance(rel2)
s[2] = new NetStims(rel2)
s[2].interval=0.2
s[2].number = 1
s[2].start=100
s[2].noise=0
s[2].seed(987651119)
rsyn[2] = new Exp2Syn(rel2)
rsyn[2].tau1 = 1
rsyn[2].tau2 = 5
rsyn[2].e=0
nc[2] = new NetCon(s[2],rsyn[2],0,0,vett[2])
}
user5[28] {
print distance(0.5)
stim= new IClamp(0.5)
stim.amp=0.59
stim.dur=tstop
stim.del=0
}
forsec "axon" {
insert nax gbar_nax=gna*AXONM
insert kdr gkdrbar_kdr=gkdr
insert kap gkabar_kap = KMULTP
}
forsec "soma" {
insert hd ghdbar_hd=ghd vhalfl_hd=-73
insert na3 gbar_na3=gna
insert kdr gkdrbar_kdr=gkdr
insert kap gkabar_kap = KMULTP
}
for i=0, numbasal-1 dendrite[i] {
insert hd ghdbar_hd=ghd vhalfl_hd=-73
insert na3 gbar_na3=gna
insert kdr gkdrbar_kdr=gkdr
insert kap gkabar_kap=0
insert kad gkabar_kad=0
for (x,0) { xdist = distance(x)
ghdbar_hd(x) = ghd*(1+3*xdist/100)
if (xdist > 100){
vhalfl_hd=-81
gkabar_kad(x) = KMULT*(1+xdist/100)
} else {
vhalfl_hd=-73
gkabar_kap(x) = KMULTP*(1+xdist/100)
}
}
}
forsec "apical_dendrite" {
insert hd ghdbar_hd=ghd
insert na3 gbar_na3=gna
insert kdr gkdrbar_kdr=gkdr
insert kap gkabar_kap=0
insert kad gkabar_kad=0
for (x,0) { xdist = distance(x)
ghdbar_hd(x) = ghd*(1+3*xdist/100)
if (xdist > 100){
vhalfl_hd=-81
gkabar_kad(x) = KMULT*(1+xdist/100)
} else {
vhalfl_hd=-73
gkabar_kap(x) = KMULTP*(1+xdist/100)
}
}
}
forsec "user5" {
insert hd ghdbar_hd=ghd
insert na3 gbar_na3=gna
insert kdr gkdrbar_kdr=gkdr
insert kap gkabar_kap=0
insert kad gkabar_kad=0
for (x,0) { xdist = distance(x)
ghdbar_hd(x) = ghd*(1+3*xdist/100)
if (xdist > 100){
vhalfl_hd=-81
gkabar_kad(x) = KMULT*(1+xdist/100)
} else {
vhalfl_hd=-73
gkabar_kap(x) = KMULTP*(1+xdist/100)
}
}
}
proc init() {
t=0
forall {
v=Vrest
if (ismembrane("nax") || ismembrane("na3")) {ena=55}
if (ismembrane("kdr") || ismembrane("kap") || ismembrane("kad")) {ek=-90}
if (ismembrane("hd") ) {ehd_hd=-30}
}
finitialize(Vrest)
fcurrent()
forall {
for (x) {
if (ismembrane("na3")||ismembrane("nax")){e_pas(x)=v(x)+(ina(x)+ik(x))/g_pas(x)}
if (ismembrane("hd")) {e_pas(x)=e_pas(x)+i_hd(x)/g_pas(x)}
}
}
cvode.re_init()
cvode.event(tstop)
access soma
g.begin()
}
proc advance() {
fadvance()
g.plot(t)
g.flush()
p.flush()
doNotify()
}
proc runp() {
ropen("sinapsi_weights.txt")
for i=0, pesi-1 {
nc[i].weight = fscan()*1.e-3
}
if (nc[2].weight==8.e-3) {nc[2].weight=nc[2].weight-2.e-3}
nc[0].weight=(nc[0].weight)+(20*1.e-3)
nc[1].weight=(nc[1].weight)+(30*1.e-3)
nc[2].weight=(nc[2].weight)+(41*1.e-3)
ropen()
stdinit()
continuerun(tstop)
doNotify()
}
proc runm() {
runp(1)
}