--- # Configuration file for PN->KC<->GGN network
# rngseed: 9502 # random seed for numpy
stimulus:
onset: 0.5s # when the stimulus starts (PN spiking rate increases)
duration: 1.0s # duration of stimulus
tail: 1s # duration of simulation post stimulus end time
stabilization_time: 0.2s # not even spontaneous activity - allow each cell to reach its resting Vm
pn:
delta: 5ms # parameter for inhomogeneous Poisson process to generate the PN spike times
number: 830 # number of PNs
odor_exc_frac: 0.2 # fraction of all PNs excited by odor
odor_inh_frac: 0.1 # fraction of spontaneously active PNs inhibited by odor - guessed
spont_exc_frac: 0.77 # fraction of PNs spontaneously active
stim_rate: 20.0Hz # baseline firing rate of a PN upon stimulus
spont_rate: 2.6Hz # baseline firing rate of a PN during spontaneous activity
osc_freq: 20.0Hz # LFP oscillaion frequency
osc_amp_scale: 0.4 # the oscillation amplitude as a fraction of baseline firing rate
offdur: 0.5s # duration of off response
shifting: false # whether to make PN population with shifting activity time
start_frac: 0.7 # what fraction of PNs start together (shifting activity)
shifting_frac: 0.1 # what fraction will be newly recruited at each time bin
kc:
filename: cell_templates/kc_1_comp.hoc # celltemplate filename
name: KC # name of the celltemplate
number: 50000 # total number of KCs
lca_frac: 0.7 # fraction of KC population located in LCA / synapsed by LCA branch of GGN
n_vm: 500 # number of KCs to record Vm from
cluster_size: 1000 # number of KCs in each spatial cluster
# cluster_rs: 1058 # Random seed to reproduce cluster
fake_clusters: False # Create fake clusters to compare with spatial clustering of coactive KC->GGN connections
shared_pn_frac: 0.8 # fraction of PN inputs KCs in each cluster share
ggn:
filename: cell_templates/GGN_20170309_sc.hoc # celltemplate filename
name: GGN_20170309_sc # celltemplate name
RA: 100ohm*cm
RM: 33.33kohm*cm**2
dclamp: False # whether to create dynamic clamp
dclamp_file: '' # dclamp_input/20170929_mbl_1_hxa_2_t01_filtered.npy # dynamic clamp file input
dclamp_sec: dend[1] # dynamic clamp target section
dclamp_pos: 0.5 # position in dynamic clamp section
pn_kc_syn: # PN->KC synapse properties
tau: 13.333ms # tau1 = tau2 = tau for synaptic conductance
e: 0.0mV # reversal potential
gmax: 3.0pS # maximum synaptic conductance
presyn_frac: 0.5 # fraction of PN population presynaptic to each KC
clustered: false # whether the PNs should be connected to KCs by clusters - overridden by --pn_kc_clustered
clustered_pre: false # Whether PNs are also in clusters and there should be cluster to cluster connections
std: 1.0 # if > 0, lognormal distribution with mean=gmax and std = std * gmax
delay: 0.0ms # mean synaptic delay
delay_sd: 0.0ms # sd in synaptic delay
kc_ggn_alphaL_syn: # KC->GGN synapses in alpha lobe
threshold: -20.0mV
delay: 5.0ms # 0.5 m/s -> 2 mm takes 4 ms, + 1ms for synaptic delay
e: 0.0mV
tau1: 13.333ms
tau2: 13.333ms
gmax: 20pS
std: 1.0
kc_ggn_CA_syn: # KC-GGN synapses in calyx
threshold: -20.0mV
delay: 1.0ms
e: 0.0mV
tau1: 13.333ms
tau2: 13.333ms
gmax: 0pS
# present: false # whether to add synapses of this kind - overridden by --ca
clustered: false # are these to be clustered spatially on GGN?
regional: false # are KCs restricted to one of LCA and MCA - overridden by --regional
ggn_kc_syn: # GGN->KC graded synapse : gradedsyn.mod based on Papadopoulou, et al., 2011
vmid: -40.0mV # -40mV in Papadopoulou et al 2011
vslope: 5.0mV # 5 mV in Papadopoulou et al 2011
gmax: 0.7nS # 50nS in Papadopoulou, et al., 2011
tau: 4.0ms # 4ms in Papadopoulou, et al., 2011
e: -80mV # -90 mV in Papadopoulou et al., 2011, often -80 for GABA
std: 1.0 # This is based on Song, et al., 2005 PLOS biol. (supp)
frac_weakly_inhibited: 0.0 # Fraction of KCs that receive relatively weak inhibition from GGN
gmax_weakly_inhibited: 0.1nS # Inhibitory conductance on weakly inhibited KCs
# ig:
# filename: '' # IzhiGS # dclamp_input/ig_spikerate.npy # IzhiGS for Izhikevich model with Graded synapse
# inject: 70.0
# ig_ggn_syn:
# threshold: -20.0mV
# delay: 5.0ms
# e: -80.0mV
# tau1: 1ms
# tau2: 5ms
# gmax: 100nS
# target: 'dend[1]'
# ggn_ig_syn: # GGN->KC graded synapse : gradedsyn.mod based on Papadopoulou, et al., 2011
# vmid: -40.0mV # -40mV in Papadopoulou et al 2011
# vslope: 5.0mV # 5 mV in Papadopoulou et al 2011
# gmax: 0.05uS
# # tau: 4.0ms # 4ms in Papadopoulou, et al., 2011
# # e: -80mV # -90 mV in Papadopoulou et al., 2011, often -80 for GABA
# source: 'dend[1]'
# pn_ig_syn: # PN->IG synapse properties
# weight: 0.2 # maximum synaptic conductance
# delay: 100ms
# threshold: -20mV
# tau: 13.33ms
# kc_ig_syn: # KC->IG synapse properties
# weight: 0.5 # maximum synaptic conductance
# delay: 10ms
# threshold: -20mV
# tau: 13.33ms # this is actually hard coded in the mod file. ignored.
# std: 1.0
output:
directory: /data/rays3/ggn/olfactory_network # directory to dump simulation results in