Mitral cell model for dynamical olfactory bulb networks From: Rubin D, Cleland TA (2006) Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiology. This model mitral cell (the principal output neuron of the vertebrate olfactory bulb) comprises four compartments (soma, apical dendrite, apical tuft, lateral dendrite) and exhibits endogenous subthreshold oscillations, phase resetting, and evoked spike phasing properties as described in mitral cells by: (1) Desmaisons D, Vincent JD, Lledo PM (1999) Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J Neuroscience 29(24):10727-10737. (2) Balu R, Larimer P, Strowbridge BW (2004) Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J Neurophysiology 92(2):743-753. (3) Chen WR, Shepherd GM (1997) Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain Research 745(1-2):189-196. (4) Heyward P, Ennis M, Keller A, Shipley MT (2001) Membrane bistability in olfactory bulb mitral cells. J Neuroscience 21(14):5311-5320. Adapted from the model of: Davison AP, Feng J and Brown D. (2000) A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Research Bulletin 51(5): 393-399. Run the model using the file mosinit.hoc after compiling the .mod files. An xpanel will appear enabling easy recreation of many figures from the 2006 paper. Be patient on slower machines as traces will by default only become visible after 1600-2000 ms computed time. Parameters can be derived from the xpanel code or from the tables in the 2006 paper. For more information contact Thomas Cleland (tac29@cornell.edu). Changelog --------- 2022-05: Updated MOD files to compile with the latest neuron releases where ion variables used as STATE can not be declared as GLOBAL.