rm(list=ls())
setwd("C:/Users/prave/Desktop/tables")
library(dplyr)
library(ggplot2)
library(plotrix)
library(tidyverse)
library(ggpubr)
library(gridExtra)
pandemic <- read.csv("pandemic.csv")
lockdown.pre <- pandemic[which(pandemic$Period == "Pre-lockdown"),]
lockdown.post <- pandemic[which(pandemic$Period == "Post-lockdown"),]
reopening <- pandemic[which(pandemic$Period == "Reopening"),]
lockdown.pre.df <- data.frame(period = "Pre-lockdown",
date.group = lockdown.pre$date.group,
paranoia.group = lockdown.pre$Paranoia.group,
wsr.b1 = lockdown.pre$WSR.block1,
wsr.b2 = lockdown.pre$WSR.block2,
wsr.avg = rowMeans(cbind(lockdown.pre$WSR.block1,lockdown.pre$WSR.block2)),
lsr.b1 = lockdown.pre$LSR.block1,
lsr.b2 = lockdown.pre$LSR.block2,
lsr.avg = rowMeans(cbind(lockdown.pre$LSR.block1,lockdown.pre$LSR.block2)),
mu02.b1 = lockdown.pre$mu02_1,
mu02.b2 = lockdown.pre$mu02_2,
mu02.avg = rowMeans(cbind(lockdown.pre$mu02_1,lockdown.pre$mu02_2)),
mu03.b1 = lockdown.pre$mu03_1,
mu03.b2 = lockdown.pre$mu03_2,
mu03.avg = rowMeans(cbind(lockdown.pre$mu03_1,lockdown.pre$mu03_2)),
kappa.b1 = lockdown.pre$kappa2_1,
kappa.b2 = lockdown.pre$kappa2_2,
kappa.avg = rowMeans(cbind(lockdown.pre$kappa2_1,lockdown.pre$kappa2_2)))
lockdown.pre.df <- lockdown.pre.df[73:202,]
lockdown.post.df <- data.frame(period = "Post-lockdown",
date.group = lockdown.post$date.group,
paranoia.group = lockdown.post$Paranoia.group,
wsr.b1 = lockdown.post$WSR.block1,
wsr.b2 = lockdown.post$WSR.block2,
wsr.avg = rowMeans(cbind(lockdown.post$WSR.block1,lockdown.post$WSR.block2)),
lsr.b1 = lockdown.post$LSR.block1,
lsr.b2 = lockdown.post$LSR.block2,
lsr.avg = rowMeans(cbind(lockdown.post$LSR.block1,lockdown.post$LSR.block2)),
mu02.b1 = lockdown.post$mu02_1,
mu02.b2 = lockdown.post$mu02_2,
mu02.avg = rowMeans(cbind(lockdown.post$mu02_1,lockdown.post$mu02_2)),
mu03.b1 = lockdown.post$mu03_1,
mu03.b2 = lockdown.post$mu03_2,
mu03.avg = rowMeans(cbind(lockdown.post$mu03_1,lockdown.post$mu03_2)),
kappa.b1 = lockdown.post$kappa2_1,
kappa.b2 = lockdown.post$kappa2_2,
kappa.avg = rowMeans(cbind(lockdown.post$kappa2_1,lockdown.post$kappa2_2)))
reopening.df <- data.frame(period = "Reopening",
date.group = reopening$date.group,
paranoia.group = reopening$Paranoia.group,
wsr.b1 = reopening$WSR.block1,
wsr.b2 = reopening$WSR.block2,
wsr.avg = rowMeans(cbind(reopening$WSR.block1,reopening$WSR.block2)),
lsr.b1 = reopening$LSR.block1,
lsr.b2 = reopening$LSR.block2,
lsr.avg = rowMeans(cbind(reopening$LSR.block1,reopening$LSR.block2)),
mu02.b1 = reopening$mu02_1,
mu02.b2 = reopening$mu02_2,
mu02.avg = rowMeans(cbind(reopening$mu02_1,reopening$mu02_2)),
mu03.b1 = reopening$mu03_1,
mu03.b2 = reopening$mu03_2,
mu03.avg = rowMeans(cbind(reopening$mu03_1,reopening$mu03_2)),
kappa.b1 = reopening$kappa2_1,
kappa.b2 = reopening$kappa2_2,
kappa.avg = rowMeans(cbind(reopening$kappa2_1,reopening$kappa2_2)))
fig1.df <- rbind(lockdown.pre.df,lockdown.post.df,reopening.df)
fig1.df$period <- factor(fig1.df$period, level = c("Pre-lockdown","Post-lockdown","Reopening"))
fig1.df$paranoia.group <- factor(fig1.df$paranoia.group, level = c("low","high"))
## Figure 2b
wsr.avg.df <- fig1.df %>%
group_by(period, paranoia.group) %>% # removed paranoia.group
summarise(mean = mean(wsr.avg, na.rm = TRUE),
se = std.error(wsr.avg, na.rm = TRUE)) %>%
mutate(param = c("Win-switch rate"))
lsr.avg.df <- fig1.df %>%
group_by(period, paranoia.group) %>% # removed paranoia.group
summarise(mean = mean(lsr.avg, na.rm = TRUE),
se = std.error(lsr.avg, na.rm = TRUE)) %>%
mutate(param = c("Lose-stay rate"))
# wsr
g1 <- ggplot(wsr.avg.df, aes(x=paranoia.group, y=mean, fill=period)) +
geom_bar(stat = "identity", width = 0.7) +
geom_errorbar(data=wsr.avg.df, aes(x=paranoia.group, ymin=mean-se, ymax=mean+se), width=0.4, colour="black", alpha=0.9, size=1.3) +
geom_point(data=fig1.df, aes(x=paranoia.group, y=wsr.avg), position = position_jitter(width = .15),
shape=20, color="black", size=1) +
facet_grid(. ~ period) +
scale_fill_manual(name="Pandemic period",
values = c("#FADBD8","#F1948A","#E74C3C"),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
#scale_y_continuous(breaks = c(0,0.25,0.5,0.75,1)) +
labs(x="",
y="") +
theme(panel.background = element_rect(fill = "white"),
legend.position = "none",
axis.line = element_line(colour = "black"),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
strip.background = element_blank(),
strip.text.x = element_blank())
# lsr
g2 <- ggplot(lsr.avg.df, aes(x=paranoia.group, y=mean, fill=period)) +
geom_bar(stat = "identity", width = 0.7) +
geom_errorbar(data=lsr.avg.df, aes(x=paranoia.group, ymin=mean-se, ymax=mean+se), width=0.4, colour="black", alpha=0.9, size=1.3) +
geom_point(data=fig1.df, aes(x=paranoia.group, y=lsr.avg), position = position_jitter(width = .15),
shape=20, color="black", size=1) +
facet_grid(. ~ period) +
scale_fill_manual(name="Pandemic period",
values = c("#FADBD8","#F1948A","#E74C3C"),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
#scale_y_continuous(breaks = c(0,0.25,0.5,0.75,1)) +
labs(x="",
y="") +
theme(panel.background = element_rect(fill = "white"),
legend.position = "none",
axis.line = element_line(colour = "black"),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
strip.background = element_blank(),
strip.text.x = element_blank())
## Figure 2c
mu2.avg.df <- fig1.df %>%
group_by(period, paranoia.group) %>% # removed paranoia.group
summarise(mean = mean(mu02.avg, na.rm = TRUE),
se = std.error(mu02.avg, na.rm = TRUE)) %>%
mutate(param = c("Contingency belief"))
mu3.avg.df <- fig1.df %>%
group_by(period,paranoia.group) %>% # removed paranoia.group
summarise(mean = mean(mu03.avg, na.rm = TRUE),
se = std.error(mu03.avg, na.rm = TRUE)) %>%
mutate(param = c("Volatility belief"))
# mu2
g3 <- ggplot(mu2.avg.df, aes(x=paranoia.group, y=mean, fill=period)) +
geom_bar(stat = "identity", width = 0.7) +
geom_errorbar(data=mu2.avg.df, aes(x=paranoia.group, ymin=mean-se, ymax=mean+se), width=0.4, colour="black", alpha=0.9, size=1.3) +
geom_point(data=fig1.df, aes(x=paranoia.group, y=mu02.avg), position = position_jitter(width = .15),
shape=20, color="black", size=1) +
facet_grid(. ~ period) +
scale_fill_manual(name="Pandemic period",
values = c("#FADBD8","#F1948A","#E74C3C"),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
labs(x="",
y="") +
theme(panel.background = element_rect(fill = "white"),
legend.position = "none",
axis.line = element_line(colour = "black"),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
strip.background = element_blank(),
strip.text.x = element_blank())
g4 <- ggplot(mu3.avg.df, aes(x=paranoia.group, y=mean, fill=period)) +
geom_bar(stat = "identity", width = 0.7) +
geom_errorbar(data=mu3.avg.df, aes(x=paranoia.group, ymin=mean-se, ymax=mean+se), width=0.4, colour="black", alpha=0.9, size=1.3) +
geom_point(data=fig1.df, aes(x=paranoia.group, y=mu03.avg), position = position_jitter(width = .15),
shape=20, color="black", size=1) +
facet_grid(. ~ period) +
scale_fill_manual(name="Pandemic period",
values = c("#FADBD8","#F1948A","#E74C3C"),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
labs(x="",
y="") +
theme(panel.background = element_rect(fill = "white"),
legend.position = "none",
axis.line = element_line(colour = "black"),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
strip.background = element_blank(),
strip.text.x = element_blank())