rm(list=ls())
setwd("C:/Users/prave/Desktop/tables")
library(dplyr)
library(ggplot2)
library(plotrix)
library(tidyverse)
library(ggpubr)
pandemic <- read.csv("pandemic.csv")
lockdown.pre <- pandemic[which(pandemic$Period == "Pre-lockdown"),]
lockdown.post <- pandemic[which(pandemic$Period == "Post-lockdown"),]
reopening <- pandemic[which(pandemic$Period == "Reopening"),]
lockdown.pre.df <- data.frame(period = "Pre-lockdown",
date.group = lockdown.pre$date.group,
task.condition = lockdown.pre$Task.condition,
sabotage.belief = lockdown.pre$Sabotage.belief + 3)
lockdown.pre.df <- lockdown.pre.df[73:202,]
lockdown.post.df <- data.frame(period = "Post-lockdown",
date.group = lockdown.post$date.group,
task.condition = lockdown.post$Task.condition,
sabotage.belief = lockdown.post$Sabotage.belief + 3)
reopening.df <- data.frame(period = "Reopening",
date.group = reopening$date.group,
task.condition = reopening$Task.condition,
sabotage.belief = reopening$Sabotage.belief + 3)
sabotage.df <- rbind(lockdown.pre.df, lockdown.post.df, reopening.df)
sabotage.df.social <- sabotage.df[which(sabotage.df$task.condition == "Social"),]
sabotage.df.social$normalized <- (sabotage.df.social$sabotage.belief-min(sabotage.df.social$sabotage.belief,na.rm = TRUE))/(max(sabotage.df.social$sabotage.belief,na.rm = TRUE)-min(sabotage.df.social$sabotage.belief, na.rm = TRUE))
sabotage.df.social$period <- factor(sabotage.df.social$period,
level = c("Pre-lockdown",
"Post-lockdown",
"Reopening"))
sabotage.df.stats <- sabotage.df.social %>%
group_by(period) %>%
summarise(sabotage.mean = mean(sabotage.belief, na.rm = TRUE),
sabotage.se = std.error(sabotage.belief, na.rm = TRUE),
sabotage.mean.norm = mean(normalized, na.rm = TRUE),
sabotage.se.norm = std.error(normalized, na.rm = TRUE)) %>%
mutate(date.group = c(0,1,2))
# sabotage across period (geom_smooth)
# g1 <- ggplot(sabotage.df.social, aes(x=date.group, y=sabotage.belief)) +
# geom_smooth(method = "lm") + geom_jitter(width=0.25) +
# labs(x = "Pandemic Period",
# y = "Sabotage belief" ) + stat_cor(label.x = 1.3, label.y = 4) +
# scale_x_continuous(name = "Pandemic Period",breaks = c(0,1,2),
# labels = c("Pre-lockdown",
# "Lockdown",
# "Reopening")) +
# theme(panel.background = element_blank(),
# panel.border = element_rect(colour = "black", fill = NA))
# sabotage across period (geom_bar)
# g1 <- ggplot() +
# geom_bar(data=sabotage.df.stats,aes(x=date.group,y=sabotage.mean, fill=period), stat = "identity",width = 0.5) +
# geom_errorbar(data=sabotage.df.stats, aes(x=date.group, ymin=sabotage.mean-sabotage.se, ymax=sabotage.mean+sabotage.se), width=0.4, colour="black", alpha=0.9, size=1.3) +
# geom_point(data=sabotage.df.social, aes(x=date.group, y=sabotage.belief), position = position_jitter(width = .15)) +
# scale_fill_manual("", values = c("#A9A9A9","#add8e6","#659EC7"),
# labels = c("Pre-lockdown",
# "Lockdown",
# "Reopening")) +
# scale_x_continuous(name = "Pandemic Period", breaks = c(0,1,2),
# labels = c("Pre-lockdown",
# "Lockdown",
# "Reopening")) +
# labs(y = "Sabotage belief") + theme(panel.background = element_blank(),
# panel.border = element_rect(colour = "black", fill = NA),
# axis.text.x=element_blank(),
# #legend.position = "bottom",
# aspect.ratio = 1)
# # axis.ticks.x=element_blank())
# normalized
g1 <- ggplot() +
geom_bar(data=sabotage.df.stats,aes(x=date.group,y=sabotage.mean.norm, fill=period), stat = "identity",width = 0.5) +
geom_errorbar(data=sabotage.df.stats, aes(x=date.group, ymin=sabotage.mean.norm-sabotage.se.norm, ymax=sabotage.mean.norm+sabotage.se.norm), width=0.4, colour="black", alpha=0.9, size=1.3) +
geom_point(data=sabotage.df.social, aes(x=date.group, y=normalized), position = position_jitter(width = .15),
shape=20, color="black", size=1) +
scale_fill_manual("", values = c("#A9A9A9","#add8e6","#659EC7"),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
scale_x_continuous(name = "", breaks = c(0,1,2),
labels = c("Pre-lockdown",
"Lockdown",
"Reopening")) +
labs(y = "") + theme(panel.background = element_rect(fill = "white"),
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
axis.line = element_line( colour = "black"),
legend.position = "none",
#legend.box = "vertical",
axis.text.x = element_blank(),
axis.text.y = element_blank(),
aspect.ratio = 1)
# axis.ticks.x=element_blank())
boxplot(sabotage.df.social$normalized ~ sabotage.df.social$period)
sabotage.df.social.pre.reopening <- sabotage.df.social[which(sabotage.df.social$date.group == 0 | sabotage.df.social$date.group == 2),]
t.test(sabotage.df.social.pre.reopening$normalized ~ sabotage.df.social.pre.reopening$period,
mu=0,
alt="two.sided",
conf=0.95,
var.eq=F,
paired=F)
pandemic.lockdown <- pandemic[which(pandemic$Period == "Post-lockdown"),]
#anno.g2 <- paste("list(italic(r) ==", "-0.26","\n", "p==0.027)")
#anno.g3 <- paste("list(italic(r) ==", "0.16", "p==0.017)")
#anno.g4 <- paste("list(italic(r) ==", "-0.14", "p==0.031)")
#anno.g5 <- paste("list(italic(r) ==", "-0.15", "p==0.020)")
#anno.g6 <- paste("list(italic(r) ==", "-0.18", "p==0.007)")
# stat_cor <- function (mapping = NULL, data = NULL, method = "pearson", cor.coef.name = c("r",
# "rho", "tau"), label.sep = ", ", label.x.npc = "left", label.y.npc = "top",
# label.x = NULL, label.y = NULL, output.type = "expression",
# digits = 2, r.digits = digits, p.digits = digits, geom = "text",
# position = "identity", na.rm = FALSE, show.legend = NA,
# inherit.aes = TRUE, ...)
# {
# parse <- ifelse(output.type == "expression", TRUE, FALSE)
# cor.coef.name = cor.coef.name[1]
# layer(stat = StatCor, data = data, mapping = mapping, geom = geom,
# position = position, show.legend = show.legend, inherit.aes = inherit.aes,
# params = list(label.x.npc = label.x.npc, label.y.npc = label.y.npc,
# label.x = label.x, label.y = label.y, label.sep = label.sep,
# method = method, output.type = output.type, digits = digits,
# r.digits = r.digits, p.digits = p.digits, cor.coef.name = cor.coef.name,
# parse = parse, na.rm = na.rm, ...))
# }
# sabotage and state proactivity
pandemic.lockdown.social <- pandemic.lockdown[which(pandemic.lockdown$Task.condition == "Social"),]
sabotage.proactivity.df <- data.frame(proactivity = pandemic.lockdown.social$Proactivity.score,
sabotage = pandemic.lockdown.social$Sabotage.belief + 3)
sabotage.proactivity.df$normalized <- (sabotage.proactivity.df$sabotage-min(sabotage.proactivity.df$sabotage,na.rm = TRUE))/(max(sabotage.proactivity.df$sabotage,na.rm = TRUE)-min(sabotage.proactivity.df$sabotage, na.rm = TRUE))
anno.g2 <- paste("list(italic(r) ==", -0.26, ", p==.027)")
g2 <- ggplot(sabotage.proactivity.df, aes(proactivity,normalized)) +
geom_smooth(method = "lm") + geom_point(shape=20, color="black", size=1)+
#stat_cor(label.x = 30, label.y = 0.94, size=2, color="red") +
#annotate("label", x = 70, y = .92, label = anno.g2, size=7, parse=T) +
labs(y="",
subtitle = ) +
#labs(subtitle = "In social tasks only") +
theme(panel.background = element_blank(),
#panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
#aspect.ratio = 2,
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x = element_blank(),
aspect.ratio = 1
)
# lsr, wsr, mu2, mu3 and state proactivity (block 1)
lockdown.proactivity.df <- data.frame(proactivity = pandemic.lockdown$Proactivity.score,
lsr.b1 = pandemic.lockdown$LSR.block1,
lsr.b2 = pandemic.lockdown$LSR.block2,
lsr.avg = rowMeans(cbind(pandemic.lockdown$LSR.block1,pandemic.lockdown$LSR.block2)),
wsr.b1 = pandemic.lockdown$WSR.block1,
wsr.b2 = pandemic.lockdown$WSR.block2,
wsr.avg = rowMeans(cbind(pandemic.lockdown$WSR.block1,pandemic.lockdown$WSR.block2)),
mu2.b1 = pandemic.lockdown$mu02_1,
mu2.b2 = pandemic.lockdown$mu02_2,
mu2.avg = rowMeans(cbind(pandemic.lockdown$mu02_1,pandemic.lockdown$mu02_2)),
mu3.b1= pandemic.lockdown$mu03_1,
mu3.b2= pandemic.lockdown$mu03_2,
mu3.avg = rowMeans(cbind(pandemic.lockdown$mu03_1,pandemic.lockdown$mu03_2)))
anno.g3 <- paste("list(italic(r) ==", -0.14, ", p==.031)")
g3 <- ggplot(lockdown.proactivity.df, aes(proactivity,wsr.b1)) +
geom_smooth(method = "lm") + geom_point(shape=20, color="black", size=1) +
#stat_cor(label.x = 30, label.y = 0.83, size=2, color="red") +
#annotate("label", x = 70, y = .92, label = anno.g3, size=7, parse=T) +
labs(y="") + ylim(0,1) +
theme(panel.background = element_blank(),
#panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
#aspect.ratio = 2,
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x = element_blank(),
aspect.ratio = 1
)
anno.g4 <- paste("list(italic(r) ==", 0.16, ", p==.017)")
g4 <- ggplot(lockdown.proactivity.df, aes(proactivity,lsr.b1)) +
geom_smooth(method = "lm") + geom_point(shape=20, color="black", size=1) +
#stat_cor(label.x = 30, label.y = 0.94, size=2, color="red") +
#annotate("label", x = 70, y = .92, label = anno.g4, size=7, parse=T) +
labs(y="") + ylim(0,1) +
theme(panel.background = element_blank(),
#panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
#aspect.ratio = 2,
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x = element_blank(),
aspect.ratio = 1
)
anno.g5 <- paste("list(italic(r) ==", -0.15, ", p==.02)")
g5 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu2.b1)) +
geom_smooth(method = "lm") + geom_point(shape=20, color="black", size=1) +
#stat_cor(label.x = 30, label.y = -1.1, size=2, color="red") +
#annotate("label", x = 70, y = 0.4, label = anno.g5, size=7, parse=T) +
labs(y="") + ylim(-1.5,0.5) +
theme(panel.background = element_blank(),
#panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
#aspect.ratio = 2,
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x = element_blank(),
aspect.ratio = 1
)
anno.g6 <- paste("list(italic(r) ==", -0.18, ", p==.0071)")
g6 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu3.b1)) +
geom_smooth(method = "lm") + geom_point(shape=20, color="black", size=1) +
#stat_cor(label.x = 30, label.y = 2, size=2, color="red") +
#annotate("label", x = 70, y = 2, label = anno.g6, size=7, parse=T) +
labs(y="") +
theme(panel.background = element_blank(),
#panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
#panel.border = element_rect(colour = "black", fill = NA, size = 1),
#aspect.ratio = 2,
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x = element_blank(),
aspect.ratio = 1
)
# library(gridExtra)
# grid.arrange(g1,g2,g3,g4,g5,g6, layout_matrix = rbind(c(1,1,1,1,1),c(1,1,1,1,1),c(NA,NA,NA,NA,NA),c(2,3,4,5,6)))
# # lsr, wsr, mu2, mu3 and state proactivity (block 2)
#
# g6 <- ggplot(lockdown.proactivity.df, aes(proactivity,lsr.b2)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g7 <- ggplot(lockdown.proactivity.df, aes(proactivity,wsr.b2)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g8 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu2.b2)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g9 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu3.b2)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
#
# # lsr, wsr, mu2, mu3 and state proactivity (avg)
#
#
# g10 <- ggplot(lockdown.proactivity.df, aes(proactivity,lsr.avg)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g11 <- ggplot(lockdown.proactivity.df, aes(proactivity,wsr.avg)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g12 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu2.avg)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
# g13 <- ggplot(lockdown.proactivity.df, aes(proactivity,mu3.avg)) +
# geom_smooth(method = "lm") +
# stat_cor()
#
#
# ggarrange(g2,g3,g4,g5,
# g6,g7,g8,g9,
# g10,g11,g12,g13, nrow = 4, ncol = 4)