rm(list=ls())
# set working directory
setwd("C:/Pandemic_2020/modelDB/data")
# load libraries
library(dplyr)
library(ggplot2)
library(ggpubr)
library(plotrix)
# read data
pandemic <- read.csv('pandemic.csv')
dynata <- read.csv('dynata.csv')
pandemic.reopening <- pandemic[which(pandemic$Period == "Reopening"),]
june.masks.req.nine <- c("CA","NM","MI","IL","NY","MA","RI","MD","VA")
june.states.mask.rec <- c("AK","AL","AR","AZ","CO","CT","DC","FL","GA","HI","IA",
"ID","IN","KS","KY","LA","MN","MO","MS","MT","NC","ND",
"NE","NH","NJ","NV","OH","OK","OR","PA","SC","SD","TN",
"TX","UT","VT","WA","WI","WV","WY")
# subset only the data from the above 9 states
#pandemic.reopening <- pandemic.reopening[which(pandemic.reopening$State %in% june.states.mask.rec),]
#dynata <- dynata[which(dynata$STATE %in% june.states.mask.rec),]
# pandemic.reopening.req <- pandemic.reopening[which(pandemic.reopening$State %in% june.masks.req.nine),]
# pandemic.reopening.rec <- pandemic.reopening[which(pandemic.reopening$State %in% june.states.mask.rec),]
# pandemic.reopening.df <- pandemic.reopening %>%
# group_by(State) %>%
# summarise(paranoia.mean = mean(Paranoia.score),
# tightness.mean = mean(Tightness.score),
# mu2.mean = mean(mu02_1),
# mu3.mean = mean(mu03_1))
# colnames(pandemic.reopening.df) <- c("state","paranoia.mean","tightness.mean","mu2.mean","mu3.mean")
dynata <- dynata[which(dynata$STATE %in% june.states.mask.rec),]
dynata.df <- data.frame(state = dynata$STATE,
mask.response = dynata$MASK,
value = dynata$RESPONDENTS)
dynata.df$mask.response <- ifelse(dynata.df$mask.response == "Always",5,
ifelse(dynata.df$mask.response == "Frequently",4,
ifelse(dynata.df$mask.response == "Sometimes",3,
ifelse(dynata.df$mask.response == "Rarely",2,
ifelse(dynata.df$mask.response == "Not at all",1,"")))))
dynata.df$mask.response <- as.numeric(dynata.df$mask.response)
dynata.count <- dynata.df %>%
group_by(state, mask.response) %>%
summarise(count.respondents = sum(value, na.rm = TRUE))
dynata.sum <- dynata.count %>%
group_by(state) %>%
mutate(sum.count = sum(count.respondents, na.rm = TRUE))
dynata.relFreq <- dynata.sum %>%
group_by(state) %>%
mutate(rel.freq = count.respondents/sum.count)
dynata.fiveAlways <- dynata.relFreq[which(dynata.relFreq$mask.response == 5),]
colnames(dynata.fiveAlways) <- c("State","mask.response","count.respondents","sum.count","rel.freq")
join1 <- left_join(pandemic.reopening, dynata.fiveAlways)
join1$tightness.group <- ifelse(join1$Tightness.score <= median(join1$Tightness.score, na.rm = TRUE), "loose","tight")
join1.rec <- join1[which(join1$MWR == 0),]
join1.req <- join1[which(join1$MWR == 1),]
## Are mandated vs recommended states significantly different in mask-wearing belief depending on tightness of a state?
# In recommended states
t.test(join1.rec$rel.freq ~ join1.rec$tightness.group,
mu=0,
alt="two.sided",
conf=0.95,
var.eq=F,
paired=F)
# In mandated states
t.test(join1.req$rel.freq ~ join1.req$tightness.group,
mu=0,
alt="two.sided",
conf=0.95,
var.eq=F,
paired=F)