COMMENT
17/07/2012
(c) 2012, C. Schmidt-Hieber, University College London
Based on an initial version by Chris Burgess 07/2011
Kinetics based on:
E. Fransen, A. A. Alonso, C. T. Dickson, J. Magistretti, M. E. Hasselmo
Ionic mechanisms in the generation of subthreshold oscillations and
action potential clustering in entorhinal layer II stellate neurons.
Hippocampus 14, 368 (2004).
ENDCOMMENT
NEURON {
SUFFIX ih
NONSPECIFIC_CURRENT i
RANGE i, gslow, gfast, gslowbar, gfastbar
GLOBAL ehcn, taufn, taufdo, taufdd, taufro, taufrd
GLOBAL tausn, tausdo, tausdd, tausro, tausrd
GLOBAL mifo, mifd, mife, miso, misd, mise
}
UNITS {
(mV) = (millivolt)
(S) = (siemens)
(mA) = (milliamp)
}
PARAMETER {
gfastbar = 9.8e-5 (S/cm2)
gslowbar = 5.3e-5 (S/cm2)
ehcn = -20 (mV)
taufn = 0.51 (ms) : original: .51 parameters for tau_fast
taufdo = 1.7 (mV)
taufdd = 10 (mV)
taufro = 340 (mV)
taufrd = 52 (mV)
tausn = 5.6 (ms) : parameters for tau_slow
tausdo = 17 (mV)
tausdd = 14 (mV)
tausro = 260 (mV)
tausrd = 43 (mV)
mifo = 74.2 (mV) : parameters for steady state m_fast
mifd = 9.78 (mV)
mife = 1.36
miso = 2.83 (mV) : parameters for steady state m_slow
misd = 15.9 (mV)
mise = 58.5
}
ASSIGNED {
v (mV)
gslow (S/cm2)
gfast (S/cm2)
i (mA/cm2)
alphaf (/ms) : alpha_fast
betaf (/ms) : beta_fast
alphas (/ms) : alpha_slow
betas (/ms) : beta_slow
}
INITIAL {
: assume steady state
settables(v)
mf = alphaf/(alphaf+betaf)
ms = alphas/(alphas+betas)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gfast = gfastbar*mf
gslow = gslowbar*ms
i = (gfast+gslow)*(v-ehcn)
}
STATE {
mf ms
}
DERIVATIVE states {
settables(v)
mf' = alphaf*(1-mf) - betaf*mf
ms' = alphas*(1-ms) - betas*ms
}
PROCEDURE settables(v (mV)) {
LOCAL mif, mis, tauf, taus
TABLE alphaf, betaf, alphas, betas FROM -100 TO 100 WITH 200
tauf = taufn/( exp( (v-taufdo)/taufdd ) + exp( -(v+taufro)/taufrd ) )
taus = tausn/( exp( (v-tausdo)/tausdd ) + exp( -(v+tausro)/tausrd ) )
mif = 1/pow( 1 + exp( (v+mifo)/mifd ), mife )
mis = 1/pow( 1 + exp( (v+miso)/misd ), mise )
alphaf = mif/tauf
alphas = mis/taus
betaf = (1-mif)/tauf
betas = (1-mis)/taus
}