#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: aussel
"""
from brian2 import *
from joblib import Parallel, delayed
import multiprocessing
import os
from model_files.global_vars_and_eqs import *
from model_files.single_process import *
#from model_files.analysis_functions import *
from model_files.annex_functions import *
from model_files.set_vars_and_process import *
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_DYNAMIC'] = 'FALSE'
import time
import ntpath
from itertools import *
path=""
if os.name == 'nt':
path=os.path.join(ntpath.dirname(os.path.abspath(__file__)),"results_"+str(datetime.datetime.now()).replace(':','-'))
else :
path=".\results_"+str(datetime.datetime.now())
os.mkdir(path)
#Basic network parameters
liste_Ntypes=[[1,1]] #list of couples of the form [number of excitatory neuron types, number of inhibitory neuron types], with each number being 1 or 2
liste_maxN=[10000] #list of integers, representing the number of excitatory neurons in the CA1 region
liste_p_tri=[0.4] #list of floats, representing the synaptic connection probability on the tri-synaptic pathway
liste_p_mono=[0.3] #list of floats, representing the synaptic connection probability on the mono-synaptic pathway
liste_g_max_i=[600*psiemens] #list of floats (in siemens), representing the maximum synaptic conductances of inhibitory synapses
liste_g_max_e=[60*psiemens] #list of floats (in siemens), representing the maximum synaptic conductances of excitatory synapses
liste_topo_type=['normal'] #list of strings ('normal' or 'rectangle'), to choose between realistic and rectangular topology of the network
liste_co_type=['normal'] #list of strings ('normal' or 'uniform'), to choose between distance-related or uniform connection probability profiles between hippocampal regions
liste_co_type2=['normal'] #list of strings ('normal' or 'uniform'), to choose between distance-related or uniform connection probability profiles within hippocampal regions
#sleep-wake parameters
liste_gCAN=[(0.5*usiemens*cmeter**-2,25*usiemens*cmeter**-2)] #list of couples of the form (sleep CAN channel conductance, wakefulness CAN channel conductance), each value in siemens*meter**-2
liste_CAN=['sleep'] #list of strings ('wake' or 'sleep') to choose between sleep and wakefulness CAN channel conductances
liste_G_ACh=[3] #list of floats, representing the gain applied on some synaptic conductances under cholinergic modulation
liste_functional_co=['sleep'] #list of strings ('wake' or 'sleep') to choose between sleep and wakefulness functional connectivity
#epilepsy parameters :
liste_sprouting=[0] #list of floats, representing the mossy fiber sprouting in the DG (between 0 (healthy) and 1)
liste_sclerosis=[0] #list of floats, representing the hippocampal sclerosis (between 0 (healthy) and 1)
liste_lesion_region=['all',] #list of strings ('all','EC','DG','CA3','CA1') representing the region(s) to which hippocampal sclerosis applies
liste_tau_Cl=[0.1*second] #list of floats, representing the removal rate of chloride ions in excitatory cells (in second)
liste_Ek=[-100*mV] #list of floats, representing the resting potential of potassium channels in excitatory cells (in volt)
#Input parameters
liste_input_type=['square'] #list of strings ('custom' or 'square') representing the type of inputs to apply
#for custom inputs only :
liste_custom_inputs=[('in_file_1.txt','in_file_2.txt','in_file_3.txt',1024*Hz)] #list of tuples of the form ('file_1.txt','file_2.txt','file_3.txt',sampling frequency) containing the path to the files with the input values to be used and their sampling frequency (in Hz)
#square current input only :
liste_A0=[0] #list of floats, representing the minimum value of the input current (without unit, representing nA)
liste_A1=[1.2] #list of floats, representing the maximum value of the input current (without unit, representing nA)
liste_dur=[4000*msecond,] #list of floats, representing the duration of the stimulation
liste_f1=[0.05*Hz] #list of floats, representing the frequency of the input square wave (in Hz)
liste_duty_cycle=[0.5] #list of floats, representing the duty cycle of the square wave (between 0 and 1)
#simulation duration
liste_runtime=[0.5*second] #list of floats, representing the duration of the simulation (in second)
#simulation output :
plot_raster,save_raster,save_neuron_pos,save_syn_mat,save_all_FR=False,True,True,False,True #each boolean indicates if the specified output must be saved for all set of simulations
liste_simus=list(product(liste_Ntypes,liste_maxN,liste_p_tri,liste_p_mono,liste_g_max_i,liste_g_max_e,liste_topo_type,liste_co_type,liste_co_type2,liste_gCAN,liste_CAN,liste_G_ACh,liste_functional_co,liste_sprouting,liste_sclerosis,liste_lesion_region,liste_tau_Cl,liste_Ek,liste_input_type,liste_custom_inputs,liste_A0,liste_A1,liste_dur,liste_f1,liste_duty_cycle,liste_runtime))
liste_simus=[list(liste_simus[i])+[plot_raster,save_raster,save_neuron_pos,save_syn_mat,save_all_FR]+[i] for i in range(len(liste_simus))]
important_params=[-1] #indices of the parameters to be put to generate result file name. -1=index of the simulation
#setting the number of cores to used (all cpus by default)
num_cores = multiprocessing.cpu_count()
if os.name == 'nt':
num_cores=-3 #using all cpus on a windows does not work for an unknown reason
Parallel(n_jobs=num_cores)(delayed(set_vars_and_process)(simu,path,important_params) for simu in liste_simus)