TITLE Calcium dependent, voltage gated high conductance potassium channel
: assumes direct link to calcium channel such that nano-domain [Ca2+] is proportional to current
: original version prior to nano-domain
: TITLE BKCa current for bladder small DRG neuron soma model
: Author: Darshan Mandge (darshanmandge@iitb.ac.in)
: Computational Neurophysiology Lab
: Indian Institute of Technology Bombay, India
: For details refer:
: A biophysically detailed computational model of bladder small DRG neuron soma
: Darshan Mandge and Rohit Manchanda, PLOS Computational Biology (2018)
UNITS {
(molar) = (1/liter)
(pA) = (picoamp)
(mV) = (millivolt)
(S) = (siemens)
(mA) = (milliamp)
(mM) = (millimolar)
}
:INDEPENDENT {v FROM -100 TO 50 WITH 50 (mV)}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX bkc
THREADSAFE
POINTER icabk_p
USEION k WRITE ik
USEION ca READ cai
RANGE gkbar,gk, ik, bkscale, pCa, vshift, cabk
}
PARAMETER {
dt (ms)
celsius = 35 (degC)
gkbar = 200.00e-6 (S/cm2)
ek = -90.0 (mV)
bkscale = 1.0e9 (mM*cm2/mA) : converts icabk into mM
vshift = 0
}
ASSIGNED {
cai (mM)
v (mV)
ik (mA/cm2)
gk (S/cm2)
ninf
ntau (ms)
pCa
vhalf (mV)
sf1 (mV)
cabk (mM)
icabk_p (mA/cm2)
}
STATE {
n <1e-4>
}
BREAKPOINT {
SOLVE states METHOD cnexp
gk = n*gkbar
ik = gk*(v - ek)
}
DERIVATIVE states {
rates(v,icabk_p)
n' = (ninf-n)/ntau
}
FUNCTION boltz(x,y,z) {
LOCAL arg
arg= -(x-y)/z
if (arg > 50) {boltz = 0}
else {if (arg < -50) {boltz = 1}
else {boltz = 1.0/(1.0 + exp(arg))}}
}
FUNCTION gaussian(v,a,b,c,d) {
LOCAL arg
arg= a*exp(-(c+v)*(v+c)/(b*b)) +d
gaussian = arg
}
PROCEDURE rates(v(mV),icabk(mA/cm2)) {
LOCAL vm
UNITSOFF
vm = v + vshift
:"n" potassium activation system
:Data Fit: Scholz et al., 1998
cabk = -bkscale*icabk
if(cabk < 1e-9){ :
cabk = 1e-9
}
pCa = log10(cabk)-3
vhalf = (-43.4)*pCa + (-203)
:sf1 = 33.88*exp(-((pCa+5.423)/1.852)^2)
sf1 = gaussian(pCa,33.88,1.852,5.423,0)
:ninf = 1/(1+exp((vhalf-vm)/sf1))
ninf = boltz(vm,vhalf,sf1)
ntau = 5.54522*exp(-vm/-42.90548)+0.74926-0.11573*vm : Zhang et al., 2010
}
UNITSON