from neuron import h
import numpy
import json
from urllib import urlopen
from bs4 import BeautifulSoup, Comment
import os
import sys
import math
import re
try:
from run_protocols import protocol
except:
protocol = {}
if len(sys.argv) < 2:
print 'Usage: python %s MODELID' % sys.argv[0]
sys.exit()
active_model = None
commands = {}
blank_line = {'text': ''}
try:
with open('/home/tmm46/nrntest/verify/nrnziprun.dat') as f:
for line in f:
line = line.strip()
if not line:
commands[int(active_model)] = current
active_model = None
elif active_model is None:
if ' ' in line:
active_model = line.split()[1]
else:
active_model = line
current = []
else:
current.append(line)
except:
pass
model_id = int(sys.argv[1])
# load, run the model
if sys.argv < 3 or sys.argv[2].lower() != 'norun':
h.load_file('mosinit.hoc')
try:
h.init()
except:
pass
if model_id in commands:
for command in commands[model_id]:
print 'running: ', command
h(command)
# TODO: add this to modeldb, then read from there
mech_types = {
32992: {
'hd': 'I-h',
'kad': 'K-A',
'kap': 'K-A',
'kdr': 'K-dr',
'na3': 'Na',
'nax': 'Na'
},
125857: {
'kahp': 'K-AHP',
'nap': 'Na,p',
'kc': 'K-Ca',
'kdr': 'K-dr'
},
150240: {
'hh2': 'Na + K',
'it': 'T-type Ca',
'im': 'K (M current)'
}
}.get(model_id, {})
h.define_shape()
# load the modeldb entry
modeldb_html = urlopen('http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=%d' % model_id).read()
modeldb_soup = BeautifulSoup(modeldb_html, 'html5lib')
paper_doi = []
paper_links = []
pubmed_links = []
for link_ref in modeldb_soup.find_all(id='reference'):
for link in link_ref.find_all('a'):
if link.text.lower().strip() != 'pubmed':
href = link.get('href')
if href is not None:
paper_links.append('<a href="%s">%s</a>' % (href, link.text))
else:
href = link.get('href')
if href is not None:
pubmed_links.append('<a href="%s">%s</a>' % (href, link.text))
if len(paper_links) == 0:
paper_links = pubmed_links
full_title = modeldb_soup.find_all('title')[0].text
title, short_title = '('.join(full_title.split('(')[:-1]).strip(), full_title.split('(')[-1][:-1].strip()
# trim out any leading ModelDB
if full_title[:9] == 'ModelDB: ':
full_title = full_title[9:]
title = full_title
# get the top level folder name (assumes we are running inside that)
top_level_folder = os.getcwd().split(os.path.sep)[-1]
# scan the MOD files to find SUFFIX and POINT_PROCESS information
mech_files = {}
mech_modulates = {}
mech_depends = {}
mech_counts = {}
for root, dirs, files in os.walk('.'):
# TODO: block the other architecture libraries too
# TODO: of course, there's nothing inherently wrong with a mod file being in one of these
# folders... it's just that those tend to be copies made by nrnivmodl
if 'x86_64' not in root:
for filename in files:
if filename[-4:].lower() == '.mod':
depends_on = []
modulates = []
mech_name = None
with open(os.path.join(root, filename)) as f:
for line in f:
# strip comments (this isn't quite right because : could be inside of a VERBATIM)
if ':' in line:
line = line[: line.index(':')]
# TODO: really should be checking to make sure I'm inside of a NEURON block
split_line = line.strip().split()
split_lower = line.lower().split()
if len(split_line) == 2 and split_line[0] in ('SUFFIX', 'POINT_PROCESS'):
mech_name = split_line[1]
mech_files[mech_name] = os.path.join(root, filename)[2:]
if len(split_lower) and split_lower[0] == 'nonspecific_current':
modulates.append('Nonspecific Current')
if len(split_lower) and split_lower[0] == 'useion':
ion_name = split_lower[1]
if 'read' in split_lower:
values = re.search('READ (.*?)( WRITE| CHARGE| VALENCE|$)', line).groups()
if values is not None and values[0] != '':
depends_on.append(values[0].strip())
if 'write' in split_lower:
values = re.search('WRITE (.*?)( READ| CHARGE| VALENCE|$)', line).groups()
if values is not None and values[0] != '':
modulates.append(values[0].strip())
if mech_name is not None:
mech_depends[mech_name] = depends_on
mech_modulates[mech_name] = modulates
count = 0
for sec in h.allsec():
if hasattr(sec(0.5), mech_name):
count += 1
mech_counts[mech_name] = count
mech_xref = {}
for name, filename in mech_files.iteritems():
link = '<a href="http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=%d&file=/%s/%s">%s</a>' % (model_id, top_level_folder, filename, filename.split(os.path.sep)[-1])
if name in mech_types:
row = '%s, %s' % (mech_types[name], link)
else:
row = link
mech_xref[name] = ' (%s)' % row
h.load_file("mview.hoc")
mview = h.ModelView(1)
items = []
def navigate(hlist):
items = []
i=0
for ho in hlist:
item = {'text': ho.s.lstrip(' *')}
if ho.children:
item['children'] = navigate(ho.children)
items.append(item)
return items
# TODO: build these in instead of scraping from classic ModelView
classic_rows = navigate(mview.display.top)
nsegs = {}
uniques = {}
constant_parms = {}
def process_nseg(root):
if 'root ' in root['text']:
root_name = root['text'].split('root ')[1]
nsegs[root_name] = root['children'][1]
for child in root['children']:
if 'with unique parameters' in child['text']:
uniques[root_name] = child
if 'with constant parameters' in child['text']:
constant_parms[root_name] = child
else:
# get here if talking about all instances of a class instead of a specific one
pass
point_processes = blank_line
for row in classic_rows:
words = row['text'].split()
# NOTE: the row contains all its children in the same format as in the JSON
if len(words) == 3 and words[1] == 'LinearMechanism':
linear_mechanisms = row
if len(words) >= 3 and words[1] == 'artificial':
artificial_cells = row
if len(words) >= 3 and words[1] == 'real' and words[2] == 'cells':
for root in row['children']:
if root['text'][:5] != 'root ':
for item in root['children']:
process_nseg(item)
else:
process_nseg(root)
if row['text'] == 'Density Mechanisms':
for child_row in row['children']:
if child_row['text'] == 'Global parameters for density mechanisms':
global_param_for_density = child_row
if child_row['text'] == 'KSChan definitions for density mechanisms':
kschan_defs = child_row
if child_row['text'] == 'Homogeneous Parameters':
homogeneous_parameters = child_row
if child_row['text'] == 'Heterogeneous Parameters':
# TODO: colorize
heterogeneous_parameters = child_row
row_split = row['text'].split()
if len(row_split) >= 3 and row_split[1] == 'point' and row_split[2] == 'processes':
point_processes = row
# TODO: make a general highlight_if that takes a function to do matching
def highlight_if_sec(secs, match_sec):
"""return a list of segments matching a given section"""
result = []
i = 0
for sec in secs:
if sec == match_sec:
result += range(i, i + sec.nseg)
i += sec.nseg
return result
def all_segs_have(sec, name, val):
"""returns True iff all segments in the section have the same property value
We compare their representations with %g rather than their exact values.
"""
if name in ('cm', 'Ra'):
return '%g' % sec.__getattribute__(name) == '%g' % val
for seg in sec:
if not hasattr(seg, name):
return False
if '%g' % seg.__getattribute__(name) != '%g' % val:
return False
return True
def highlight_if_sec_parms(secs, parms):
"""return a list of segments that belong to a section where all nodes have the stated parameters"""
result = []
i = 0
for sec in secs:
if all(all_segs_have(sec, name, value) for name, value in parms.iteritems()):
result += range(i, i + sec.nseg)
i += sec.nseg
return result
def highlight_if_secname(secs, match_secname):
"""return a list of segments matching a given section"""
result = []
i = 0
for sec in secs:
if sec.name() == match_secname:
result += range(i, i + sec.nseg)
i += sec.nseg
return result
def highlight_if_mech_present(secs, mech):
"""returns a list of the segments containing the mechanism"""
result = []
i = 0
for sec in secs:
if hasattr(sec, mech) or hasattr(sec(0.5), mech):
result += range(i, i + sec.nseg)
i += sec.nseg
return result
def get_pts_between(x, y, z, d, arc, lo, hi):
left_x = numpy.interp(lo, arc, x, left=x[0], right=x[-1])
left_y = numpy.interp(lo, arc, y, left=y[0], right=y[-1])
left_z = numpy.interp(lo, arc, z, left=z[0], right=z[-1])
left_d = numpy.interp(lo, arc, d, left=d[0], right=d[-1])
right_x = numpy.interp(hi, arc, x, left=x[0], right=x[-1])
right_y = numpy.interp(hi, arc, y, left=y[0], right=y[-1])
right_z = numpy.interp(hi, arc, z, left=z[0], right=z[-1])
right_d = numpy.interp(hi, arc, d, left=x[0], right=d[-1])
in_between = [[x0, y0, z0, d0] for (x0, y0, z0, d0, a0) in zip(x, y, z, d, arc) if lo < a0 < hi]
if len(in_between) == 0:
# ensure there is at least one interior point
in_between = [[(left_x + right_x) * 0.5, (left_y + right_y) * 0.5, (left_z + right_z) * 0.5, (left_d + right_d) * 0.5]]
return [[left_x, left_y, left_z, left_d]] + in_between + [[right_x, right_y, right_z, right_d]]
def get_root(sec):
return h.SectionRef(sec=sec).root().sec
root_sections = []
for sec in h.allsec():
if not h.SectionRef(sec).has_parent():
root_sections.append(sec)
# get all mech names
mech_names = []
h("""
objref mt
json_var = 0
strdef mname
""")
h.mt = h.MechanismType(0)
for i in xrange(int(h.mt.count())):
h.mt.select(i)
h('mt.selected(mname)')
mech_names.append(h.mname)
# get all point process names
pointprocess_names = []
h.mt = h.MechanismType(1)
for i in xrange(int(h.mt.count())):
h.mt.select(i)
h('mt.selected(mname)')
pointprocess_names.append(h.mname)
def pt_from_seg(seg):
sec = seg.sec
n = int(h.n3d(sec=sec))
x = [h.x3d(i, sec=sec) for i in xrange(n)]
y = [h.y3d(i, sec=sec) for i in xrange(n)]
z = [h.z3d(i, sec=sec) for i in xrange(n)]
arc = [h.arc3d(i, sec=sec) for i in xrange(n)]
f = seg.x * sec.L
return (numpy.interp(f, arc, x), numpy.interp(f, arc, y), numpy.interp(f, arc, z))
pointprocess_locs_by_root = {}
pointprocess_mouseovers_by_root = {}
for name in pointprocess_names:
pointprocess_locs_by_root[name] = {}
pointprocess_mouseovers_by_root[name] = {}
for root in root_sections:
pointprocess_locs_by_root[name][root] = []
pointprocess_mouseovers_by_root[name][root] = []
#pointprocess_locs_by_root[name] = {root: [] for root in root_sections}
#pointprocess_mouseovers_by_root[name] = {root: [] for root in root_sections}
ell = h.List(name)
for i in xrange(int(ell.count())):
obj = ell.o(i)
if obj.has_loc():
seg = obj.get_segment()
pt = list(pt_from_seg(seg))
pointprocess_locs_by_root[name][get_root(seg.sec)].append(pt)
pointprocess_mouseovers_by_root[name][get_root(seg.sec)].append('%s at %s(%g)<br/>(%g, %g, %g)' % (name, seg.sec.name(), seg.x, pt[0], pt[1], pt[2]))
if 'children' in point_processes:
base = point_processes['children']
if len(base):
text = base[0]['text'].split()
if len(text) == 3 and text[1] == 'Point' and text[2] == 'Processes' and 'children' in base[0]:
base = base[0]['children']
for child in base:
name = child['text'].split()[1]
if name in mech_files:
child['text'] += ' ' + mech_xref[name]
elif name in ['AlphaSynapse', 'Exp2Syn', 'ExpSyn', 'IClamp', 'IntFire1', 'IntFire2', 'IntFire4', 'NetStim', 'SEClamp', 'VClamp']:
# TODO: this will need changed if help documentation is moved
child['text'] += ' (builtin: <a href="http://neuron.yale.edu/neuron/static/new_doc/modelspec/programmatic/mechanisms/mech.html#%s">ref</a>)' % name
child['action'] = []
for i, root in enumerate(root_sections):
#print 'name:', name
#print 'root:', root
#print pointprocess_locs_by_root
action = {'kind': 'neuronviewer', 'id': i}
try:
action['markers'] = pointprocess_locs_by_root[name][root]
action['marker_mouseovers'] = pointprocess_mouseovers_by_root[name][root]
except:
pass
child['action'].append(action)
if 'children' in child:
for grandchild in child['children']:
grandchild['noop'] = True
# get the names of mechanism parameters (range_vars)
range_vars = {}
for mech in mech_names:
h.mt = h.MechanismStandard(mech)
range_vars[mech] = []
suffix = '_' + mech
lensuffix = len(suffix)
for i in xrange(int(h.mt.count())):
h('mt.name(mname, %d)' % i)
mname = h.mname
if mname[-lensuffix :] == suffix:
mname = mname[: -lensuffix]
range_vars[mech].append(mname)
if not range_vars[mech]: del range_vars[mech]
#print 'range_vars:', range_vars
def mechs_present(secs):
result = []
for name in mech_names:
for sec in secs:
if hasattr(sec(0.5), name):
result.append(name)
break
return ['Ra', 'cm'] + result
def two_char_hex(n):
s = hex(int(n))[-2 :]
if s[0] == 'x':
s = '0' + s[1]
return s
def hex_rgb(r, g, b):
"""expects r, g, b between 0 and 1"""
return '#' + two_char_hex(r * 255) + two_char_hex(g * 255) + two_char_hex(b * 255)
def values_to_colors(values):
non_nan = [v for v in values if not numpy.isnan(v)]
if len(non_nan) == 0:
return ['black'] * len(values)
lo = min(non_nan)
hi = max(non_nan)
length = float(hi - lo)
if lo == hi:
return ['black' if numpy.isnan(v) else 'red' for v in values]
else:
values = numpy.array([(v - lo) / length for v in values])
# gradient from blue (lo) to red (hi)
return [(hex_rgb(v, 0, 1 - v) if not numpy.isnan(v) else 'black') for v in values]
def morph_per_root(root):
morph = []
h.define_shape()
for sec in secs_with_root(root):
n3d = int(h.n3d(sec=sec))
x = [h.x3d(i, sec=sec) for i in xrange(n3d)]
y = [h.y3d(i, sec=sec) for i in xrange(n3d)]
z = [h.z3d(i, sec=sec) for i in xrange(n3d)]
d = [h.diam3d(i, sec=sec) for i in xrange(n3d)]
arc = [h.arc3d(i, sec=sec) for i in xrange(n3d)]
length = sec.L
half_dx = 0.5 / sec.nseg
for seg in sec:
morph.append(get_pts_between(x, y, z, d, arc, (seg.x - half_dx) * length, (seg.x + half_dx) * length))
# add end points
for end_pt in [0, 1]:
for sec in secs_with_root(root):
n3d = int(h.n3d(sec=sec))
pt1 = [h.x3d(0, sec=sec), h.y3d(0, sec=sec), h.z3d(0, sec=sec), h.diam3d(0, sec=sec)]
pt2 = [h.x3d(n3d - 1, sec=sec), h.y3d(n3d - 1, sec=sec), h.z3d(n3d - 1, sec=sec), h.diam3d(n3d - 1, sec=sec)]
if h.section_orientation(sec=sec) == 0:
morph.append([pt1] if end_pt == 0 else [pt2])
else:
morph.append([pt2] if end_pt == 0 else [pt1])
return morph
def seg_names_per_root(root):
names = []
for sec in secs_with_root(root):
for seg in sec:
names.append('%s(%g)' % (sec.name(), seg.x))
for end_pt in [0, 1]:
for sec in secs_with_root(root):
names.append('%s(%d)' % (sec.name(), end_pt))
return names
def secs_with_root(root):
return [sec for sec in h.allsec() if get_root(sec) == root]
def sec_seg(secs):
if len(secs) == 1:
num_secs = '1 section'
else:
num_secs = '%d sections' % len(secs)
num_segs = sum(sec.nseg for sec in secs)
if num_segs == 1:
num_segs = '1 segment'
else:
num_segs = '%d segments' % num_segs
return '%s; %s' % (num_secs, num_segs)
def set_action_to_all(tree, action):
for row in tree:
row['action'] = action
if 'children' in row:
set_action_to_all(row['children'], action)
def nseg_analysis(secs, cell_id, root_name):
dx_max = 0
dxs = []
for sec in secs:
dx = sec.L / sec.nseg
dxs += ['dx = %g' % dx] * sec.nseg
if dx > dx_max:
dx_max = dx
dx_max_loc = sec
result = nsegs[root_name]
# compute bar chart for nseg distribution
min_nseg = min(sec.nseg for sec in secs)
max_nseg = max(sec.nseg for sec in secs)
num_bins = 10
delta_nseg = max(math.ceil((max_nseg + 1 - min_nseg) / float(num_bins)), 1)
nseg_counts = [0 for i in xrange(num_bins)]
for sec in secs:
nseg_counts[int((sec.nseg - min_nseg) / delta_nseg)] += 1
nseg_bar_data = [[i * delta_nseg + min_nseg, nseg_count] for i, nseg_count in enumerate(nseg_counts)]
# TODO: bar chart for dlambda, dx
set_action_to_all([result], [{'kind': 'neuronviewer', 'id': cell_id}])
# add bar chart for distinct values of nseg
# TODO: tooltips!
result['action'].append({
'kind': 'flot',
'data': [{'data': nseg_bar_data, 'bars': {'show': True, 'barWidth': delta_nseg, 'fillColor': 'blue'}}],
'xaxes': [{'axisLabel': 'nseg', 'labelcolor': 'black'}],
'yaxes': [{'axisLabel': 'count', 'labelcolor': 'black'}],
'color': 'black',
'title': 'nseg frequency distribution'
})
if result['text'] == '1 distinct values of nseg':
result['text'] = '1 distinct value of nseg'
# Longest dx section
result['children'][0]['action'] = [{'kind': 'neuronviewer', 'id': cell_id, 'highlight': highlight_if_sec(secs, dx_max_loc), 'hover_text': dxs}]
return result
"""
dx_max = 0
for sec in secs:
if sec.L / sec.nseg > dx_max:
dx_max = sec.L / sec.nseg
dx_max_loc = sec
nsegs[sec.nseg] = 0
return {
'text': '%d distinct value%s of nseg' % (len(nsegs.values()), 's' if len(nsegs.values()) != 1 else ''),
'action': [{'kind': 'neuronviewer', 'id': cell_id}],
'children': [
{
'text': 'Longest dx is %g at %s with nseg=%d' % (dx_max, dx_max_loc.name(), dx_max_loc.nseg),
'action': [{'kind': 'neuronviewer', 'id': cell_id, 'colors': colorize_if_sec(secs, dx_max_loc)}]
}
]
}
"""
def min_no_nan(values):
values = [v for v in values if not numpy.isnan(v)]
if values:
return min(values)
else:
return None
def max_no_nan(values):
values = [v for v in values if not numpy.isnan(v)]
if values:
return max(values)
else:
return None
def colorize_homogeneous(tree):
for row in tree['children']:
prop = row['text'].split()[0]
action = []
for cell_id, root in enumerate(root_sections):
secs = secs_with_root(root)
action.append({
'kind': 'neuronviewer',
'highlight': highlight_if_mech_present(secs, prop),
'id': cell_id
})
row['action'] = action
return tree
def colorize_by_mech_value(secs, mech, name):
values = []
if mech[-4 : ] == '_ion':
# need to do this to allow e.g. nao, a "property" of na_ion that stands alone
value_getter = lambda seg: getattr(seg, name)
else:
value_getter = lambda seg: getattr(getattr(seg, mech), name)
indices = []
i = 0
seg_count = 0
reverse_indices = []
for sec in secs:
try:
v = value_getter(sec(0.5))
for seg in sec:
values.append(value_getter(seg))
indices.append(i)
reverse_indices.append(seg_count)
i += 1
seg_count += 1
except:
if not hasattr(sec(0.5), mech):
values += [numpy.nan] * sec.nseg
indices += [-1] * sec.nseg
seg_count += sec.nseg
return values_to_colors(values), values, min_no_nan(values), max_no_nan(values), indices, reverse_indices
def flot_by_distance_from_root(root, mech, name, secs):
# measure distance from the midpt of the root
if mech[-4 : ] == '_ion':
# need to do this to allow e.g. nao, a "property" of na_ion that stands alone
value_getter = lambda seg: getattr(seg, name)
else:
value_getter = lambda seg: getattr(getattr(seg, mech), name)
h.distance(0, 0.5, sec=root)
data = []
for sec in secs:
try:
v = value_getter(sec(0.5))
for seg in sec:
data.append([h.distance(1, seg.x, sec=sec), value_getter(seg)])
except:
pass
return [{
'data': data,
'color': 'black',
'points': {'show': True}
}]
def seg_mechanisms(secs):
result = []
for sec in secs:
mechanisms = 'Mechanisms present:<br/>' + '<br/>'.join([' ' + m for m in mechs_present([sec])])
result += [mechanisms] * sec.nseg
return result
def cell_mech_analysis(secs, cell_id):
mps = mechs_present(secs)
mechs = [name + mech_xref.get(name, '') for name in mps]
children = []
for mech_text, mech in zip(mechs, mps):
child = {
'text': mech_text,
'action': [
{
'kind': 'neuronviewer',
'highlight': highlight_if_mech_present(secs, mech),
'id': cell_id
}
]
}
if mech in range_vars:
child_parts = []
for name in range_vars[mech]:
flotchart = flot_by_distance_from_root(root_sections[cell_id], mech, name, secs)
colors, values, lo, hi, indices, reverse_indices = colorize_by_mech_value(secs, mech, name)
values = [repr(v) for v in values]
if lo is not None:
nv_action = {'kind': 'neuronviewer', 'id': cell_id, 'colors': colors, 'colorbar': 0, 'colorbar_orientation': 'horizontal', 'colorbar_low': '%g' % lo, 'colorbar_high': '%g' % hi, 'colored_var': name, 'values': values, 'flotindices': indices}
else:
nv_action = {'kind': 'neuronviewer', 'id': cell_id}
child_parts.append({
'text': name,
'action': [
nv_action,
{
'kind': 'flot',
'data': flotchart,
'xaxes': [{'axisLabel': 'Distance from root', 'labelcolor': 'black'}],
'yaxes': [{'axisLabel': '%s.%s' % (mech, name), 'labelcolor': 'black'}],
'hoverable': True,
'clickable': True,
'neuron_highlight_id': cell_id,
'neuron_highlight_segs': reverse_indices
}
]
})
child['children'] = child_parts
children.append(child)
return {
'text': '%d inserted mechanisms' % len(mechs),
'action': [{'kind': 'neuronviewer', 'id': cell_id, 'hover_text': seg_mechanisms(secs)}],
'children': children
}
def cell_tree(root):
cell_id = root_sections.index(root)
secs = secs_with_root(root)
# TODO: subsets with constant parameters, point processes
if root.name() in nsegs:
result = [
{
'text': sec_seg(secs),
'action': [{'kind': 'neuronviewer', 'id': cell_id}]
},
nseg_analysis(secs, cell_id, root.name()),
cell_mech_analysis(secs, cell_id)
]
else:
# TODO: better fallback for the non-first members of a group then to simply
# omit all nseg analysis?
result = [
{
'text': sec_seg(secs),
'action': [{'kind': 'neuronviewer', 'id': cell_id}]
},
cell_mech_analysis(secs, cell_id)
]
unique = uniques.get(root.name())
constant_parm = constant_parms.get(root.name())
if constant_parm:
result.append(constant_parm)
if unique:
result.append(unique)
return result
# summary
summary = {
'text': sec_seg(list(h.allsec()))
}
# real cells
# TODO: action: display all cells
real_cells = {
'text': '%d real cell%s' % (len(root_sections), 's' if len(root_sections) != 1 else ''),
'action': [
{
'kind': 'neuronviewer',
'id': i
} for i in xrange(len(root_sections))
]
}
if root_sections:
real_cells['children'] = []
for cell_id, root in enumerate(root_sections):
# TODO: action: when clicking on a specific cell, display just that one
real_cells['children'].append({'text': 'root %s' % root.name(), 'children': cell_tree(root), 'action': [{'kind': 'neuronviewer', 'id': cell_id}]})
if len(paper_links):
children = [{'text': 'Paper in %s' % item, 'noop': True} for item in paper_links]
else:
children = []
children.append({
'text': '<a href="http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=%d">ModelDB Entry</a>' % model_id,
'noop': True
})
references = {
'text': 'References',
'children': children,
'noop': True
}
if len(sys.argv) > 3:
# sys.argv[3] assumed to be the run protocol
if sys.argv[3] in protocol:
p = protocol[sys.argv[3]]
references['children'].append({
'text': 'Run Protocol',
'noop': True,
'children': [
{
'text': 'Compiling',
'children': [{'text': line, 'noop': True} for line in p['compile']],
'noop': True
},
{
'text': 'Launching NEURON',
'children': [{'text': line, 'noop': True} for line in p['launch']],
'noop': True
},
{
'text': 'Running',
'children': [{'text': line, 'noop': True} for line in p['run']],
'noop': True
}
]
})
# process uniques to remove {} and add highlighting
for cell_id, root in enumerate(root_sections):
if root.name() in uniques:
all_uniques = set([])
for row in uniques[root.name()]['children']:
secname = row['text'].rstrip(' {')
row['text'] = secname
highlight = highlight_if_secname(secs_with_root(root), secname)
all_uniques = all_uniques.union(highlight)
action = [{'kind': 'neuronviewer', 'id': cell_id, 'highlight': highlight}]
row['action'] = action
if row['children'][-1]['text'].strip() == '}':
row['children'] = row['children'][: -1]
for child in row['children']:
child['action'] = action
uniques[root.name()]['action'] = [{'kind': 'neuronviewer', 'id': cell_id, 'highlight': list(all_uniques)}]
def parm_subset_properties(node):
"""reads the tree to construct a dictionary of parameter values"""
result = {}
for row in node.get('children', []):
text = row['text'].split()
result[text[0]] = float(text[-1])
return result
# process constant_parms to add highlighting
for cell_id, root in enumerate(root_sections):
if root.name() in constant_parms:
all_constants = set([])
delete_rows = []
for i, row in enumerate(constant_parms[root.name()]['children']):
# TODO: the problem with this approach is that it ignores inserted mechanisms with no parameters (e.g. ds in 32992), but the tree we're scraping does not ignore that
parms = parm_subset_properties(row)
if parms:
highlight = highlight_if_sec_parms(secs_with_root(root), parms)
all_constants = all_constants.union(highlight)
action = [{'kind': 'neuronviewer', 'id': cell_id, 'highlight': highlight}]
row['action'] = action
for child in row['children']:
child['action'] = action
else:
delete_rows.append(i)
# remove the subsets with no parameters (these correspond to mechanisms with no parameters, but we cannot visualize that)
for item in delete_rows[::-1]:
del constant_parms[root.name()]['children'][item]
# TODO: map these section lists to named section lists (or their unions/intersections/etc... arbitrarily complicated problem)
constant_parms[root.name()]['text'] = '%d subsets with constant parameters' % len(constant_parms[root.name()]['children'])
constant_parms[root.name()]['action'] = [{'kind': 'neuronviewer', 'id': cell_id, 'highlight': list(all_constants)}]
# mechanisms in use
mechs = [{'text': name + mech_xref.get(name, '')} for name in mechs_present(list(h.allsec()))]
for row in mechs:
mech_name = row['text'].split()[0]
depends = mech_depends.get(mech_name, [])
modulates = mech_modulates.get(mech_name, [])
count = mech_counts.get(mech_name, 0)
if len(depends) or len(modulates) or count:
row['children'] = []
if len(depends):
row['children'].append({'text': 'READs: %s' % ', '.join(depends)})
if len(modulates):
row['children'].append({'text': 'WRITEs: %s' % ', '.join(modulates)})
if count:
row['children'].append({'text': 'Present in %d sections' % count})
mech_in_use = {'text': '%d mechanisms in use' % len(mechs), 'children': mechs}
# density mechanisms
density_mechanisms = {
'text': 'Density Mechanisms',
'children': [
mech_in_use,
colorize_homogeneous(homogeneous_parameters),
heterogeneous_parameters,
global_param_for_density,
kschan_defs
]
}
def process_values(name, values):
if len(values) == 1:
# TODO: plot location
return {'text': '%s = %g' % (name, values[0])}
else:
# TODO: plot location, plot values as a function of distance to root
return {
'text': '%d values for %s from %g to %g' % (len(values), name, min(values), max(values)),
'children': [{'text': v} for v in values]
}
# NetCon (based on ncview.hoc)
netcon_list = h.List('NetCon')
netcons = {'text': '%d NetCon objects' % netcon_list.count()}
if netcon_list.count():
weights = []
delays = []
threshold = []
# TODO: talk to Michael about why this doesn't work in pure python
for i in xrange(int(netcon_list.count())):
h.mt = netcon_list.object(i)
h('json_var = mt.weight')
weights.append(h.json_var)
h('json_var = mt.delay')
delays.append(h.json_var)
h('json_var = mt.threshold')
threshold.append(h.json_var)
weights = sorted(set(weights))
delays = sorted(set(delays))
threshold = sorted(set(threshold))
netcons['children'] = [
process_values('weight', weights),
process_values('delay', delays),
process_values('threshold', threshold)
]
# include for components data
# TODO: make this use an API to get dynamically
components = {'include': '//senselab.med.yale.edu/modeldb/modelview_components.asp?model=%d&callback=jsonp_callback_' % model_id}
# make all of the components noop
def make_noop(tree):
for row in tree:
row['noop'] = True
if 'children' in row:
make_noop(row['children'])
make_noop([components])
data = {
'modelview_version': 0,
'neuron': [{'title': 'root: ' + root.name(), 'morphology': morph_per_root(root), 'seg_names': seg_names_per_root(root)} for root in root_sections],
'title': title,
'short_title': short_title,
'neuronviewer': range(len(root_sections)),
'tree': [
summary,
blank_line,
real_cells,
artificial_cells,
netcons,
linear_mechanisms,
blank_line,
density_mechanisms,
point_processes,
blank_line,
components,
blank_line,
references #, {'text': 'green circle', 'action': [{'kind': 'svg', 'svg': '<circle id="greencircle" cx="30" cy="30" r="30" fill="green" />', 'viewbox': '0 0 60 60'}]}
],
'colorbars': [
{
'type': 'css',
'css': """
/* from http://www.colorzilla.com/gradient-editor/#0000ff+0,ff0000+100; accessed 26 Nov 2013 */
background: #0000ff;
background: url();
background: -moz-linear-gradient(left, #0000ff 0%, #ff0000 100%);
background: -webkit-gradient(linear, left top, right top, color-stop(0%,#0000ff), color-stop(100%,#ff0000));
background: -webkit-linear-gradient(left, #0000ff 0%,#ff0000 100%);
background: -o-linear-gradient(left, #0000ff 0%,#ff0000 100%);
background: -ms-linear-gradient(left, #0000ff 0%,#ff0000 100%);
background: linear-gradient(to right, #0000ff 0%,#ff0000 100%);
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#0000ff', endColorstr='#ff0000',GradientType=1 );
"""
}
]
}
if len(sys.argv) < 4:
with open('%d.json' % model_id, 'w') as f:
f.write(json.dumps(data))
else:
with open('%s.json' % sys.argv[3], 'w') as f:
f.write(json.dumps(data))
if len(paper_links) == 0:
print 'No paper link found.'