import numpy as np
# Define path to original data (see README file for more information
# how to download the original data)
original_data_path = None
# Define path to the experimental spiking data of Chu et al. (2014) (see README)
chu2014_path = None
population_labels = ['2/3E', '2/3I', '4E', '4I', '5E', '5I', '6E', '6I']
# This path determines the location of the infomap
# installation and needs to be provided to execute the script for Fig. 7
infomap_path = None
tex_names = {'23': 'twothree', '4': 'four', '5': 'five', '6': 'six'}
def structural_gradient(target_area, source_area, arch_types):
"""
Returns the structural gradient between two areas
See Schmidt, M., Bakker, R., Hilgetag, C.C. et al.
Brain Structure and Function (2018), 223:1409,
for a definition.
Parameters
----------
target_area : str
Name of target area.
source_area : str
Name of source area.
arch_types : dict
Dictionary containing the architectural type for each area.
"""
if target_area != source_area:
if arch_types[target_area] < arch_types[source_area]:
return 'HL'
elif arch_types[target_area] > arch_types[source_area]:
return 'LH'
else:
return 'HZ'
else:
return 'same-area'
def write_out_lw(fn, C, std=False):
"""
Stores line widths for arrows in path figures
generated by pstricks to a txt file.
Parameters
----------
fn : str
Filename of output file.
C : dict
Dictionary with line width values.
std : bool
Whether to write out mean or std values.
"""
if not std:
max_lw = 0.3 # This is an empirically determined value
scale_factor = max_lw / np.max(list(C.values()))
with open(fn, 'w') as f:
for pair, count in list(C.items()):
s = '\setboolean{{DRAW{}{}{}{}}}{{true}}'.format(tex_names[pair[0][:-1]],
pair[0][-1],
tex_names[pair[1][:-1]],
pair[1][-1])
f.write(s)
f.write('\n')
s = '\def\{}{}{}{}{{{}}}'.format(tex_names[pair[0][:-1]],
pair[0][-1],
tex_names[pair[1][:-1]],
pair[1][-1],
float(count) * scale_factor)
f.write(s)
f.write('\n')
else:
max_lw = 0.3
scale_factor = max_lw / np.max(list(C['mean'].values()))
with open(fn, 'w') as f:
for pair, count in list(C['mean'].items()):
s = '\setboolean{{DRAW\{}{}{}{}}}{{true}}'.format(tex_names[pair[0][:-1]],
pair[0][-1],
tex_names[pair[1][:-1]],
pair[1][-1])
f.write('\n')
s = '\def\{}{}{}{}{{{}}}'.format(tex_names[pair[0][:-1]],
pair[0][-1],
tex_names[pair[1][:-1]],
pair[1][-1],
float(count) * scale_factor)
f.write('\n')
for pair, count in list(C['1sigma'].items()):
f.write('\n')
s = '\def\{}{}{}{}sigma{{{}}}'.format(tex_names[pair[0][:-1]],
pair[0][-1],
tex_names[pair[1][:-1]],
pair[1][-1],
float(count) * scale_factor)
f.write('\n')
def area_population_list(structure, area):
"""
Construct list of all populations in an area.
Parameters
----------
structure : dict
Dictionary defining the structure of each area.
area : str
Area to construct list for.
"""
complete = []
for pop in structure[area]:
complete.append(area + '-' + pop)
return complete