COMMENT
This T-type calcium current was originally reported in Wang XJ et al 1991
This file supplies a version of this current identical to Quadroni and Knopfel 1994
except for gbar and Erev (see notes below).
ENDCOMMENT
NEURON {
SUFFIX lva
: NONSPECIFIC_CURRENT i
USEION ca WRITE ica
RANGE Erev,g, gbar, i
RANGE k, tee, alpha_1, alpha_2
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gbar = 166e-6 (S/cm2) < 0, 1e9 > : Quadroni and Knopfel use 166e-6
: Wang et al used 0.4e-3
Erev = 80 (mV) : orig from Wang XJ et al 1991 was 120
: Quadroni and Knopfel 1994 table 1 use 80 instead
}
ASSIGNED {
ica (mA/cm2)
i (mA/cm2)
v (mV)
g (S/cm2)
k
tee : parameter "t" in Quadroni and Knopfel 1994 table 1
alpha_1 : parameter used for both alpha1 and beta1
alpha_2 : parameter used for both alpha2 and beta2
}
STATE { m h d }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m^3 * h
ica = g * (v - Erev)
i = ica : used only to display the value of the current (section.i_lva(0.5))
}
INITIAL {
LOCAL C, E
: assume that v has been constant for a long time
: (derivable from rate equations in DERIVATIVE block at equilibrium)
rates(v)
m = alpham(v)/(alpham(v) + betam(v))
: h and d are intertwined so more complex than above equilib state for m
C = beta1(v) / alpha1(v)
E = alpha2(v) / beta2(v)
h = E / (E * C + E + C)
d = 1 - (1 + C) * h
}
DERIVATIVE states{
rates(v)
m' = alpham(v) * (1 - m) - betam(v) * m
h' = alpha1(v) * (1 - h - d) - beta1(v) * h
d' = beta2(v) * (1 - h - d) - alpha2(v) * d
}
FUNCTION alpham(Vm (mV)) (/ms) {
UNITSOFF
alpham = 3.3 /(1.7 + exp(-(Vm + 28.8)/13.5))
UNITSON
}
FUNCTION betam(Vm (mV)) (/ms) {
UNITSOFF
betam = 3.3 * exp(-(Vm + 63)/7.8)/(1.7 + exp(-(Vm + 28.8)/13.5))
UNITSON
}
FUNCTION alpha1(Vm (mV)) (/ms) {
UNITSOFF
alpha1 = alpha_1
UNITSON
}
FUNCTION beta1(Vm (mV)) (/ms) {
UNITSOFF
beta1 = k * alpha_1
UNITSON
}
FUNCTION alpha2(Vm (mV)) (/ms) {
UNITSOFF
alpha2 = alpha_2
UNITSON
}
FUNCTION beta2(Vm (mV)) (/ms) {
UNITSOFF
beta2 = k * alpha_2
UNITSON
}
PROCEDURE rates(Vm(mV)) {
k = (0.25 + exp((Vm + 83.5)/6.3))^0.5 - 0.5
tee = 240.0 / (1 + exp((Vm + 37.4)/30))
alpha_1 = 2.5 / (tee*(1 + k)) : defined since used in alpha1 and beta1
alpha_2 = 2.5 * exp(-(Vm + 160.3)/17.8)
}