COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal
na.mod
Sodium channel, Hodgkin-Huxley style kinetics.
Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)
qi is not well constrained by the data, since there are no points
between -80 and -55. So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc
voltage dependencies are shifted approximately from the best
fit to give higher threshold
Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu
May 2006: set the tha -28 mV, vshift 0 and thinf -55 mV to comply with measured
Somatic Na+ kinetics in neocortex. Kole, ANU, 2006
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX nakole
USEION na READ ena WRITE ina
RANGE m, h, gna, gbar, vshift
GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
RANGE minf, hinf, mtau, htau
GLOBAL Ra, Rb, Rd, Rg
GLOBAL q10, temp, tadj, vmin, vmax
GLOBAL vShift_inact
}
PARAMETER {
gbar = 1000 (pS/um2) : 0.12 mho/cm2
vshift = 0 (mV) : voltage shift (affects all; mind polarity: positive means left-shift)
vShift_inact= 0 (mV) : voltage shift (affects only inactivation; mind polarity: positive means right-shift)
tha = -28 (mV) : v 1/2 for act (-42)
qa = 9 (mV) : act slope
Ra = 0.182 (/ms) : open (v)
Rb = 0.124 (/ms) : close (v)
thi1 = -50 (mV) : v 1/2 for inact
thi2 = -75 (mV) : v 1/2 for inact
qi = 5 (mV) : inact tau slope
thinf = -55 (mV) : inact inf slope
qinf = 6.2 (mV) : inact inf slope
Rg = 0.0091 (/ms) : inact (v)
Rd = 0.024 (/ms) : inact recov (v)
temp = 23 (degC) : original temp
q10 = 2.3 : temperature sensitivity
v (mV)
dt (ms)
celsius (degC)
vmin = -120 (mV)
vmax = 100 (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
gna (pS/um2)
ena (mV)
minf hinf
mtau (ms) htau (ms)
tadj
}
STATE { m h }
INITIAL {
trates(v+vshift)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = tadj*gbar*m*m*m*h
ina = (1e-4) * gna * (v - ena)
}
LOCAL mexp, hexp
DERIVATIVE states { :Computes state variables m, h, and n
trates(v+vshift) : at the current v and dt.
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(v) {
TABLE minf, hinf, mtau, htau
DEPEND celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf
FROM vmin TO vmax WITH 199
rates(v): not consistently executed from here if usetable == 1
: tinc = -dt * tadj
: mexp = 1 - exp(tinc/mtau)
: hexp = 1 - exp(tinc/htau)
}
PROCEDURE rates(vm) {
LOCAL a, b, vs
a = trap0(vm,tha,Ra,qa)
b = trap0(-vm,-tha,Rb,qa)
tadj = q10^((celsius - temp)/10)
mtau = 1/tadj/(a+b)
minf = a/(a+b)
:"h" inactivation
vs = vm - vShift_inact
a = trap0(vs,thi1,Rd,qi)
b = trap0(-vs,-thi2,Rg,qi)
htau = 1/tadj/(a+b)
hinf = 1/(1+exp((vs-thinf)/qinf))
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v/th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}