TITLE Potassium A-type current for nucleus accumbens (Kv1.2)
COMMENT
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX kas
USEION k READ ek WRITE ik
RANGE gkbar, ik
}
PARAMETER {
gkbar = 0.01 (mho/cm2)
qfact = 9
vmh = -27.0 (mV) vmc = -16 (mV)
vhh = -33.5 (mV) vhc = 21.5 (mV)
taum0 = 3.4 (ms) Cm = 89.2 (ms) vthm = -34.3 (mV) vtcm = 30.1 (mV)
alpha = 1 vth1 = -0.96 (mV) vtc1 = 29.01 (mV)
beta = 1 vth2 = -0.96 (mV) vtc2 = 100 (mV)
Ch = 9876.6 (ms) a = 0.996 hshift = 0 (mV)
htaushift = -90 (mV) }
STATE { m h }
ASSIGNED {
ek (mV)
v (mV)
ik (mA/cm2)
gk (S/cm2)
minf
hinf
mtau (ms)
htau (ms)
}
INITIAL {
settables(v)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE state METHOD cnexp
gk = gkbar * m * m * (a*h + (1-a))
ik = gk * ( v - ek )
}
DERIVATIVE state {
settables(v)
mtau = mtau / qfact
htau = htau / qfact
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE settables( v (mV) ) {
LOCAL left, right
TABLE minf, hinf, mtau, htau DEPEND hshift, Ch
FROM -200 TO 200 WITH 201
minf = 1 / (1+(exp( (v - vmh) / vmc )))
hinf = 1 / (1+(exp( (v - vhh - hshift) / vhc )))
mtau = taum0 + Cm * exp( - ((v-vthm)/vtcm)^2 )
left = alpha * exp( -(v-vth1-htaushift)/vtc1 ) right = beta * exp( (v-vth2-htaushift)/vtc2 ) htau = Ch / ( left + right )
}