# -*- coding: utf-8 -*-
####################################
#Nakano T, Otsuka M, Yoshimoto J, Doya K (2015) A Spiking Neural Network Model of Model-Free Reinforcement Learning with High-Dimensional Sensory Input and Perceptual Ambiguity. PLoS ONE 10(3): e0115620. doi:10.1371/journal.pone.0115620
####################################
import nest
nest.pynestkernel.logstdout("log.txt")
import nest.raster_plot
import nest.voltage_trace
import pylab
import numpy
import scipy
import time, sys
import matplotlib.pyplot as plt
import random
import operator
import math
nest.ResetKernel()
nest.SetKernelStatus({"overwrite_files": True})
class SNNc:
def InitW(self):
##init weight
##Whs
self.Whs=[]
for j in range(self.NS):
Whstemp=[]
for i in range(self.NH):
Whstemp.append(random.normalvariate(self.InitWhsmean, self.InitWhsstd))
self.Whs.append(Whstemp)
##Wha
self.Wha=[]
for j in range(self.NA):
Whatemp=[]
for i in range(self.NH):
Whatemp.append(random.normalvariate(self.InitWhamean,self.InitWhastd))
self.Wha.append(Whatemp)
def ConnectW(self):
##Whs
connWhs=[]
for i in range(self.NS):
self.Whs[i].append(1.0)
connWhs.append(nest.FindConnections([self.Sneurons[i]]))
nest.SetStatus(connWhs[i],['weight'][0],self.Whs[i])
self.Whs[i].pop()
##Wha
connWha=[]
for i in range(self.NA):
self.Wha[i].append(1.0)
connWha.append(nest.FindConnections([self.Aneurons[i]]))
nest.SetStatus(connWha[i],['weight'][0],self.Wha[i])
self.Wha[i].pop() # for Wah
##Wah
self.Wah=map(list, zip(*self.Wha))#transpose
for i in range(self.NH):
self.Wah[i].append(1.0)
connWah=[]
for i in range(self.NH):
connWah.append(nest.FindConnections([self.Hneurons[i]]))
nest.SetStatus(connWah[i],['weight'][0],self.Wah[i])
#define parameters
NS=90 # number of state neurons
NH=90 # number of hidden neurons
NA=90 # number of action neurons
InitWhsmean=10 # mean weight Whs
InitWhsstd=11.88 # std weight Whs
InitWhamean=10 # mean weight Wha
InitWhastd=11.88 # std weight Wha
Wseed=0#seed for weight
Nseed=[123]#seed for noise
driveparams_on = {'amplitude':1000.}#current inputs to state neurons (and action neurons)
driveparams_on_a = {'amplitude':1000.}#current inputs to state neurons (and action neurons)
driveparams_off_a = {'amplitude':-2000.}#current inputs to state neurons (and action neurons)
driveparams_off = {'amplitude':0.}#no current inputs
noiseparams = {'mean':0.0, 'std':600.}#noise inputs to all state and action neurons
sdparams = { "withtime": True, "withgid" : True,'to_file':False, 'to_screen':False,'flush_after_simulate':True,'flush_records':True}
#neuronparams = { 'tau_m':20., 'V_th':-50., 'E_L':-60., 't_ref':2., 'V_reset':-60., 'C_m':200.}
#create neurons
Sneurons = nest.Create('iaf_neuron',NS)
Hneurons = nest.Create('iaf_neuron',NH)
Aneurons = nest.Create('iaf_neuron',NA)
sd= nest.Create('spike_detector')
drive= nest.Create('dc_generator',6+2)
nest.SetKernelStatus({'rng_seeds':Nseed})#noise
noise= nest.Create('noise_generator',3)
voltmeter = nest.Create("voltmeter")
#set parameters
nest.SetStatus(sd,[sdparams] )
nest.SetStatus(noise,[noiseparams] ) # if noise selection works, comment out this.
#nest.SetStatus(Sneurons, [neuronparams])
#nest.SetStatus(Hneurons, [neuronparams])
#nest.SetStatus(Aneurons, [neuronparams])
#connect
nest.DivergentConnect(noise[0:1], Sneurons)
nest.DivergentConnect(noise[1:2], Aneurons)
nest.DivergentConnect(noise[2:3], Hneurons)
nest.DivergentConnect(drive[0:1], Sneurons[0:NS/6])
nest.DivergentConnect(drive[1:2], Sneurons[NS/6:NS*2/6])
nest.DivergentConnect(drive[2:3], Sneurons[NS*2/6:NS*3/6])
nest.DivergentConnect(drive[3:4], Sneurons[NS*3/6:NS*4/6])
nest.DivergentConnect(drive[4:5], Sneurons[NS*4/6:NS*5/6])
nest.DivergentConnect(drive[5:6], Sneurons[NS*5/6:NS])
nest.DivergentConnect(drive[6:7], Aneurons[0:NA/2])
nest.DivergentConnect(drive[7:8], Aneurons[NA/2:NA])
nest.ConvergentConnect(Sneurons, Hneurons, weight=100.0, delay=1.0)#whight is no meaning because it is defined later
nest.ConvergentConnect(Hneurons, Aneurons, weight=100.0, delay=1.0)#DivergentConnect?
nest.ConvergentConnect(Aneurons, Hneurons, weight=100.0, delay=1.0)
nest.ConvergentConnect(Sneurons, sd)
nest.ConvergentConnect(Hneurons, sd)
nest.ConvergentConnect(Aneurons, sd)
nest.Connect(voltmeter, Hneurons[20:21])
#weight
random.seed(Wseed)
####################################
def StateClamp(state=1, action=0):
nest.SetStatus(SNN.drive,[SNN.driveparams_off] )# all drives are 0
if state==0:
nest.SetStatus(SNN.drive[0:1],[SNN.driveparams_on] )
if state==1:
nest.SetStatus(SNN.drive[1:2],[SNN.driveparams_on] )
if state==2:
nest.SetStatus(SNN.drive[2:3],[SNN.driveparams_on] )
if state==4:
nest.SetStatus(SNN.drive[3:4],[SNN.driveparams_on] )
if state==5:
nest.SetStatus(SNN.drive[4:5],[SNN.driveparams_on] )
if state==6:
nest.SetStatus(SNN.drive[5:6],[SNN.driveparams_on] )
if action==-1:
nest.SetStatus(SNN.drive[6:7],[SNN.driveparams_on_a] )
nest.SetStatus(SNN.drive[7:8],[SNN.driveparams_off_a] )
if action==1:
nest.SetStatus(SNN.drive[6:7],[SNN.driveparams_off_a] )
nest.SetStatus(SNN.drive[7:8],[SNN.driveparams_on_a] )
nest.Simulate(T)
####################################
def CalcFR():
spikesender=nest.GetStatus(SNN.sd,['events'][0])[0]['senders']#array
spiketimes=nest.GetStatus(SNN.sd,['events'][0])[0]['times']#array
maxTime=(spiketimes[-1]//T +1)*T
IdxLastSP=numpy.nonzero(spiketimes>maxTime-100)[0][0]# last 100 ms
spcount=spikesender[IdxLastSP:]
spcount2=sorted(spcount)
fr=[]
for i in range(SNN.NS+SNN.NH+SNN.NA+1):
fr.append(spcount2.count(i))
#note
#len(fr)=SNN.NS+SNN.NH+SNN.NA+1
#fr[0] is no meaning
hiddenFR=fr[SNN.NS+1:SNN.NS+SNN.NH+1]
actionFR=[]
actionFR.append(sum(fr[SNN.NS+SNN.NH+1:SNN.NS+SNN.NH+SNN.NA/2+1]))
actionFR.append(sum(fr[SNN.NS+SNN.NH+SNN.NA/2+1:SNN.NS+SNN.NH+SNN.NA+1]))
return hiddenFR, actionFR
####################################
def Actionselection(actionFR, episode):
beta=Beta*float(episode)/float(Nepisode)
if random.random()<(math.exp(beta*actionFR[0]))/(math.exp(beta*actionFR[0])+math.exp(beta*actionFR[1])):# +1 is to avoid /0
action=-1
else:
action=1
return action
####################################
def StateTrans(state,action):
reward=-1000.
goal=0
nextState=state+action
if nextState==-1:
nextState=0
if nextState==7:
nextState=6
if nextState==3:
reward=50000.
goal=1
return nextState, reward, goal
####################################
def CalcFE_AVE(binSP, state, action, whs, wha):
#h_hat
maxFR=50.#47 spikes per 1 neuron for 100 ms. 50 is for safety
#this can be considered as mean over bins if maxFR is 50
bins=50
s_hat=[]
a_hat=[]
h_hat=[]
for i in range(0,SNN.NS):
s_hat.append(sum(binSP[i])/maxFR+0.001)#0.001 is to avoid error
for i in range(SNN.NS,SNN.NS+SNN.NH):
h_hat.append(sum(binSP[i])/maxFR+0.001)#0.001 is to avoid error
for i in range(SNN.NS+SNN.NH,SNN.NS+SNN.NH+SNN.NA):
a_hat.append(sum(binSP[i])/maxFR+0.001)#0.001 is to avoid error
#calc entropy
entropy=0
for x in h_hat:
entropy=entropy-x*math.log(x)-(1-x)*math.log(1-x)
#calc expected energy
##create state array
sarray=[0]*SNN.NS
if state<3:
sarray[state*16:state*16+16]=[1]*16
else:
sarray[(state-1)*16:(state-1)*16+16]=[1]*16
sarraya=numpy.array(sarray)
##create action array
aarray=[0]*SNN.NA
aarray[(action+1)/2*50:(action+1)/2*50+50]=[1]*50
aarraya=numpy.array(aarray)
#create matrices
smat=scipy.mat(binSP[0:SNN.NS][:])
amat=scipy.mat(binSP[SNN.NS+SNN.NH:SNN.NS+SNN.NH+SNN.NA][:])
hmat=scipy.mat(binSP[SNN.NS:SNN.NS+SNN.NH][:])
whsmat=scipy.mat(whs)
whamat=scipy.mat(wha)
#ExpEnergy
if Flagsa==1:
expEnergy_s=-sarraya*whsmat*hmat
expEnergy_a=-aarraya*whamat*hmat
temp2=expEnergy_a+expEnergy_s
else:
expEnergy_s=-smat.T*whsmat*hmat
expEnergy_a=-amat.T*whamat*hmat
temp=expEnergy_a+expEnergy_s
temp2=temp.diagonal()
expEnergy=temp2.tolist()[0]## convert array back to Python list
expEnergy_mean=sum(expEnergy)/bins
#FreeEnergy
freeEnergy=-entropy+expEnergy_mean
if Flagsa==1:
return sarray, aarray, h_hat, entropy, expEnergy_mean, freeEnergy
else:
return s_hat, a_hat, h_hat, entropy, expEnergy_mean, freeEnergy
####################################
def CalcFE_LPF(binSP, state, action, whs, wha):
alpha_h=0.1
alpha_f=0.1
s_hat=[]
a_hat=[]
h_hat=[]
maxFR=50.#47 spikes per 1 neuron for 100 ms. 50 is for safety
bins=50
for i in range(0,SNN.NS):
s_hat.append(sum(binSP[i])/maxFR+0.001)#0.001 is to avoid error
for i in range(SNN.NS+SNN.NH,SNN.NS+SNN.NH+SNN.NA):
a_hat.append(sum(binSP[i])/maxFR+0.001)#0.001 is to avoid error
h_trace=[[]]
bin_h=binSP[SNN.NS:SNN.NS+SNN.NH]
#binSP_T=map(list, zip(*binSP))#transposition
for i in range(len(bin_h)):
for j in range(bins):
if j==0:
h_trace[i].append(0.5)
else:
h_trace[i].append((1-alpha_h)*h_trace[i][j-1]+alpha_h*bin_h[i][j])
h_hat.append(h_trace[i][-1])
h_trace.append([])
h_trace.pop()
#calc entropy
entropy=[[]]
for i in range(len(h_trace[0])):
for j in range(len(h_trace)):
if j==0:
entropy[i]=-bin_h[j][i]*math.log(h_trace[j][i])-(1.-bin_h[j][i])*math.log(1.-h_trace[j][i])
else:
entropy[i]=entropy[i]-bin_h[j][i]*math.log(h_trace[j][i])-(1.-bin_h[j][i])*math.log(1.-h_trace[j][i])
entropy.append([])
entropy.pop()
#calc expected energy
#create matrices
smat=scipy.mat(binSP[0:SNN.NS][:])
amat=scipy.mat(binSP[SNN.NS+SNN.NH:SNN.NS+SNN.NH+SNN.NA][:])
hmat=scipy.mat(binSP[SNN.NS:SNN.NS+SNN.NH][:])
whsmat=scipy.mat(whs)
whamat=scipy.mat(wha)
#ExpEnergy
expEnergy_s=-smat.T*whsmat*hmat
expEnergy_a=-amat.T*whamat*hmat
temp=expEnergy_a+expEnergy_s
temp2=temp.diagonal()
expEnergy=temp2.tolist()[0]## convert array back to Python list
#f
f=[]
for i in range(bins):
f.append(-entropy[i]+expEnergy[i])
#FreeEnergy
for i in range(bins):
if i==0:
freeEnergy_t=[f[0]]
else:
freeEnergy_t.append(freeEnergy_t[i-1]+alpha_f*(f[i]-freeEnergy_t[i-1]))
#return sarray, aarray, h_hat, entropy, expEnergy_mean, freeEnergy
return s_hat, a_hat, h_hat, entropy[-1], expEnergy[-1], freeEnergy_t[-1],freeEnergy_t
####################################
def UpdateW(freeEnergy_1,freeEnergy, reward_1, reward, goal, sarray_1, aarray_1, h_hat, h_hat_1):
if goal==0:
deltaWhs=[]
for i in range(len(sarray_1)):
temp=[]
for x in h_hat_1:#Notice! h_hat was added 0.001 in CalcFE
temp.append((reward_1-Gamma*freeEnergy+freeEnergy_1)*sarray_1[i]*x)
deltaWhs.append(temp)
deltaWha=[]
for i in range(len(aarray_1)):
temp=[]
for x in h_hat_1:#Notice! h_hat was added 0.001 in CalcFE
temp.append((reward_1-Gamma*freeEnergy+freeEnergy_1)*aarray_1[i]*x)
deltaWha.append(temp)
else:
deltaWhs=[]
for i in range(len(sarray_1)):
temp=[]
for x in h_hat:#Notice! h_hat was added 0.0001 in CalcFE
temp.append((reward+freeEnergy)*sarray_1[i]*x)
deltaWhs.append(temp)
deltaWha=[]
for i in range(len(aarray_1)):
temp=[]
for x in h_hat:#Notice! h_hat was added 0.0001 in CalcFE
temp.append((reward+freeEnergy)*aarray_1[i]*x)
deltaWha.append(temp)
goal=0
return deltaWhs, deltaWha
####################################
def WinputSNN(deltaWhs, deltaWha):
whsmat=scipy.mat(SNN.Whs)#to matrix
whamat=scipy.mat(SNN.Wha)
deltaWhsmat=scipy.mat(deltaWhs)
deltaWhamat=scipy.mat(deltaWha)
newWhsmat=whsmat+Alpha*deltaWhsmat
newWhamat=whamat+Alpha*deltaWhamat
# newWhs=newWhsmat.tolist()#to list
# newWha=newWhamat.tolist()
SNN.Whs=newWhsmat.tolist()# if we use SNN.Whs=NewWhs[:] instead of this,
SNN.Wha=newWhamat.tolist()#len(SNN.Whs[0]) become +1 after NewWhs[i].append(1.0)
SNN.ConnectW()
####################################
def Outputsd():
spikesender=nest.GetStatus(SNN.sd,['events'][0])[0]['senders']#array
spiketimes=nest.GetStatus(SNN.sd,['events'][0])[0]['times']#array
spikesender.tofile("Spikesender.txt", sep=', ', format = "%e")
spiketimes.tofile("Spiketimes.txt", sep=', ', format = "%e")
####################################
def BinSPcnt():
spikesender=nest.GetStatus(SNN.sd,['events'][0])[0]['senders']#array
spiketimes=nest.GetStatus(SNN.sd,['events'][0])[0]['times']#array
maxTime=(spiketimes[-1]//1000 +1)*1000
bins=50
binsize=2
binidx=[]
for i in range(bins):
if max(spiketimes)>maxTime-101+i*binsize:
binidx.append(numpy.nonzero(spiketimes>maxTime-101+i*binsize)[0][0])
#nonzero is like "find" in matlab
j=i
else:
binidx.append(binidx[j])
binspikes=[]
for i in range(bins-1):
binspikes.append(sorted(spikesender[binidx[i]:binidx[i+1]]))
binspikes.append(sorted(spikesender[binidx[bins-1]:]))
binSP=[[]]
for i in range(SNN.NS+SNN.NH+SNN.NA):
for j in range(bins):
if i+1 in binspikes[j]:
binSP[i].append(1)
else:
binSP[i].append(0)
if i != SNN.NS+SNN.NH+SNN.NA-1:
binSP.append([])
#binSP=map(list, zip(*binSP))#transposition
return binSP
####################################
####################################
#main
SNN=SNNc()
Flag_FE=0#1 is LPF
Flagsa=0#1 for using binary state and action in FEAVE
T=500
Nepoch=1
Nepisode=2000
Maxstep=30
Gamma=0.99
Alpha=0.0001
Beta=0.1
HistoryNstep=[]
HistoryCumR=[]
Historys=[]
Historya=[]
HistoryFE=[]
HistoryFEts=[]
HistoryFEtg=[]
HistoryFR=[]
for Epoch in range(Nepoch):
nest.SetKernelStatus({'time':0.0})
Nstep=[]
HistoryCumRtemp=[]
Historystemp2=[]
Historyatemp2=[]
HistoryFEtemp2=[]
HistoryFRtemp2=[]
SNN.InitW()
SNN.ConnectW()
for Episode in range(Nepisode):
Goal=0
Action=0
#State=Episode%2
State=random.randint(0,1)
if State==1:
State=6
FreeEnergy=0.
FreeEnergy_1=0.
Reward=0.
Reward_1=0.
CumR=0
Historystemp=[]
Historyatemp=[]
HistoryFEtemp=[]
HistoryFRtemp=[]
for Step in range(Maxstep):
StateClamp(State) #run SNN
[HiddenFR, ActionFR]=CalcFR()
Action= Actionselection(ActionFR,Episode)
print("State", State, "Action", Action)
StateClamp(State, Action)# for FE
#[HiddenFR, ActionFR]=CalcFR()
BinSP=BinSPcnt()
if Step==0:
State_1=State
Action_1=Action
#HiddenFR_1=HiddenFR
BinSP_1=BinSP[:][:]
Whs_1=SNN.Whs[:][:]
Wha_1=SNN.Wha[:][:]
if Flag_FE==1:
[Sarray, Aarray, H_hat, Entropy, ExpEnergy, FreeEnergy, FreeEnergy_t]=CalcFE_LPF(BinSP, State, Action, Whs_1, Wha_1)#calc FE
[Sarray_1, Aarray_1, H_hat_1, Entropy_1,ExpEnergy_1, FreeEnergy_1, FreeEnergy_t_1]=CalcFE_LPF(BinSP_1, State_1, Action_1, Whs_1, Wha_1)#calc FE
else:
[Sarray, Aarray, H_hat, Entropy, ExpEnergy, FreeEnergy]=CalcFE_AVE(BinSP, State, Action, Whs_1, Wha_1)#calc FE
[Sarray_1, Aarray_1, H_hat_1, Entropy_1,ExpEnergy_1, FreeEnergy_1]=CalcFE_AVE(BinSP_1, State_1, Action_1, Whs_1, Wha_1)#calc FE
State_1=State###
Action_1=Action###
Reward_1=Reward ###
#HiddenFR_1=HiddenFR###
BinSP_1=BinSP[:][:]
Whs_1=SNN.Whs[:][:] ###
Wha_1=SNN.Wha[:][:] ###
[State, Reward, Goal]=StateTrans(State, Action)# move
[DeltaWhs, DeltaWha]=UpdateW(FreeEnergy_1,FreeEnergy, Reward_1, Reward, 0, Sarray_1, Aarray_1, H_hat, H_hat_1)
Print1="Epoch: %d, Episode: %d, Step: %d"
Print2="New state: %d, State: %d, Action: %d, Reward: %d, Goal: %d, CumR=%.3f"
Print3="FreeEnergy(s=%d, a=%d)=%.3f, Entropy=%.3f, ExpEnergy=%.3f"
Print4="ActionFR1=%d, ActionFR2=%d"
print Print1 % (Epoch+1, Episode+1, Step+1)
print Print2 % (State, State_1, Action_1, Reward, Goal, CumR)
print Print3 % (State_1, Action_1, FreeEnergy, Entropy, ExpEnergy)
print Print4 % (ActionFR[0], ActionFR[1])
print("Step",Nstep)
if Step==0:
Historystemp.append(State_1)
Historystemp.append(State)
Historyatemp.append(Action)
HistoryFEtemp.append(FreeEnergy)
HistoryFRtemp.append(ActionFR)
if Step==0 and Epoch ==0 and Flag_FE==1:
HistoryFEts.append(FreeEnergy_t)
if Step != 0:
WinputSNN(DeltaWhs, DeltaWha)#not run 1st move
CumR=CumR+Reward_1*Gamma**(Step-1)
if Goal == 1:
CumR=CumR+Reward*Gamma**(Step+1)
Whs=SNN.Whs[:][:] ####not need if ResetNetwork is off
Wha=SNN.Wha[:][:] ####not need if ResetNetwork is off
nest.ResetNetwork()
SNN.Whs=Whs_1[:][:] ####not need if ResetNetwork is off
SNN.Wha=Wha_1[:][:] ####not need if ResetNetwork is off
[DeltaWhs, DeltaWha]=UpdateW(FreeEnergy_1,FreeEnergy, Reward_1, Reward, 1, Sarray, Aarray, H_hat, H_hat_1)
SNN.Whs=Whs[:][:] ####not need if ResetNetwork is off
SNN.Wha=Wha[:][:] ####not need if ResetNetwork is off
WinputSNN(DeltaWhs, DeltaWha)#not run 1st move
break
Historystemp2.append(Historystemp)
Historyatemp2.append(Historyatemp)
HistoryFEtemp2.append(HistoryFEtemp)
HistoryFRtemp2.append(HistoryFRtemp)
Nstep.append(Step+1)
HistoryCumRtemp.append(CumR)
if Epoch ==0 and Flag_FE==1:
if Goal==0:
HistoryFEtg.append([0 for _ in range(50)])
else:
HistoryFEtg.append(FreeEnergy_t)
Historys.append(Historystemp2)
Historya.append(Historyatemp2)
HistoryFE.append(HistoryFEtemp2)
HistoryFR.append(HistoryFRtemp2)
HistoryNstep.append(Nstep)
HistoryCumR.append(HistoryCumRtemp)
#to file
fHistory= open('History.txt', 'w')
for i in range(Nepoch):
for j in range(Nepisode):
fHistory.write("Epoch:%d, Episode: %d\n" % (i+1, j+1))
fHistory.write(str(Historys[i][j]) )
fHistory.write('\n')
fHistory.write(str(Historya[i][j]) )
fHistory.write('\n')
fHistory.write(str(HistoryFE[i][j]) )
fHistory.write('\n')
fHistory.write(str(HistoryFR[i][j]) )
fHistory.write('\n')
fHistory.write('\n')
fHistory.close()
fHistoryNstep= open('HistoryNstep.txt', 'w')
fHistoryCumR= open('HistoryCumR.txt', 'w')
for i in range(Nepoch):
for j in range(Nepisode):
fHistoryNstep.write(str(HistoryNstep[i][j]))
fHistoryCumR.write(str(HistoryCumR[i][j]))
if j !=Nepisode-1:
fHistoryNstep.write(', ')
fHistoryCumR.write(', ')
fHistoryNstep.write('\n')
fHistoryCumR.write('\n')
fHistoryNstep.close()
fHistoryCumR.close()
fWhs= open('Whs.txt', 'w')
for i in range(SNN.NS):
for j in range(SNN.NH):
fWhs.write(str(SNN.Whs[i][j]))
if j !=SNN.NH-1:
fWhs.write(', ')
fWhs.write('\n')
fWhs.close()
fWha= open('Wha.txt', 'w')
for i in range(SNN.NA):
for j in range(SNN.NH):
fWha.write(str(SNN.Wha[i][j]))
if j !=SNN.NH-1:
fWha.write(', ')
fWha.write('\n')
fWha.close()
if Flag_FE==1:
fFEts= open('FEts.txt', 'w')
fFEtg= open('FEtg.txt', 'w')
for i in range(Nepisode):
for j in range(50):
fFEts.write(str(HistoryFEts[i][j]))
fFEtg.write(str(HistoryFEtg[i][j]))
if j !=50-1:
fFEts.write(', ')
fFEtg.write(', ')
fFEts.write('\n')
fFEtg.write('\n')
fFEts.close()
fFEtg.close()
nest.SetKernelStatus({'time':0.0})
nest.SetStatus(SNN.voltmeter,[{"to_file": True, "withtime": True}])
StateClamp(1)
StateClamp(1,1)
nest.raster_plot.from_device(SNN.sd, hist=False)
plt.xlim( (0, 1000) )
##plt.show()
#plt.savefig('raster.eps')
##plt.close()
##nest.voltage_trace.from_device(SNN.voltmeter)